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UNIT-I 

ESSAY QUESTIONS 

 1. Explain the importance of Newton’s laws of motion. 
Ans: First law:

Every body continues in its state of rest or of uniform 
motion in a straight line unless an external force acts on it to 
change that state. 
Significance:
 First law states that the body cannot change its state by 
itself. This property is called inertia. So the first law leads to 
the definition of inertia.  It also states that the force is 
necessary to change the state the body. Hence it defines the 
term force as force is one which changes or tries to change the 
state of the body. The concept of rest, motion or acceleration 
can be specified only when the frame of reference is 
specified. Hence Newton’s first law is a statement about 
reference frames. Any frame of reference which obeys the 
Newton’s laws of motion is called inertial frame of reference. 
Second law:  

The rate of change of momentum of a particle is equal 
to the force acting on it and takes place in the direction of 
force. 
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Significance: 

Second law leads to the measurement of force.   It states 
that the time rate of change of momentum of a particle is 
equal to the force acting on it. Hence  

 d mvdp dvF m ma
dt dt dt

   

    So the product of mass and acceleration gives the force. 
When F=0, then a=0. Thus when there is no force the 
acceleration is zero, so the body will be in uniform motion or 
at rest. This is the first law.  Hence Newton’s first law is a 
special case of second law. 
Third law:   
 To every action there is always an equal and opposite 
reaction.
Significance:
  Action and reaction are two forces acting on two 
different bodies. They never act on the same body. Third law 
leads to the law of conservation of linear momentum. That is 
for two bodies, 1 1 2 2m u m u  1 1 2 2m v m v . 

 2. Explain the motion of variable mass system. 
Ans:  If the mass of the system varies with time, then it is 
called variable mass system.  
 Ex:  motion of a rocket. 
 Motion of variable mass system: Consider a system of 
mass M, whose centre of mass moves with a velocityV at any 
instant of time t. After a time  t t ,a mass M has been 

ejected from the system and moves with a velocity u . The 
remaining mass  M M ,moves with a velocity  V V . 
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Initial momentum of the system = MV
Final momentum of the system  
 = M u +  M M  V V
Rate of change of momentum  

 =
  M u M M V V MV

t

  



     

This gives the external force Fe x t  acting on the system 

  M u M M V V MV
F

t

  



      ext

M u MV M V MV M V MV

t

    



      

M V M M Vu M V
t t t t

    
   

   

When t approaches to zero,   
V dV
t d t




 ,  
M dM
t dt




 ,  0M V
t

 




dM dV dMF u M V
dt dt dt

    ext

 dV dMM F u V
dt dt

   ext
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 The term   dMu V
dt

  is the rate of change of 

momentum of the system due to the mass leaving it. This can 
be taken as the reaction force on the system excerted by the 
mass leaving it. 

 reactiondVM F F
dt

  ext

 3. Explain the motion of a rocket and derive the 
expression for its velocity. 

Ans:  The motion of rocket is an example 
of system of variable mass. The rocket 
consists of a combustion chamber in 
which liquid or solid fuel is burnt. When 
the fuel is burnt, the pressure inside the 
combustion chamber rises very high. Due 
to this high pressure hot gasses are 
expelled from the tail of the rocket. Then 
according to the law of conservation of 
momentum, the rocket moves in the 
direction opposite to the direction of hot 
gas jet. As the mass of the fuel inside the 
rocket decreases with time, the velocity of 
the rocket increases.    

Expression for velocity: Let M be 
the mass of the rocket including fuel and 
V be its velocity at the time t. Let in a 
time interval dt, an amount of mass dM be ejected from the 
rocket in the form of gas jet. Let u be the velocity of gas jet 
relative to the rocket.  
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Relative velocity = V u
Force acting on the jet = (rate of change of mass of the 

rocket) (relative velocity) =  dM V u
dt



   From Newton’s third law, this is equal to the thrust on 
the rocket. 

 Thrust on the rocket =  dM V u
dt



Weight of the rocket = M g
Net force acting on the rocket in forward direction  

 =   MdM V u
dt

g  ..... (1) 

According to Newton’s second law,  

 The net force on the rocket =  d MV
dt

..... (2) 

 from (1) & (2) :    d dMMV V u
dt dt

M g  

dV dM dM dMM V V u
dt dt t d

M g
d t

    

dV dMM u
dt dt

M g   

Considering the magnitudes, 
dV dMM u
dt d

Mg
t

  

M dV ud tMgM d   
1dV u dM dt
M

g   

 Integrating the above equation from the beginning of 
the motion where t = 0, M = M0, V = V0, up to the instant of 
time where t = t, M = M, V = V. 
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1dV u dM dt
M

g     
0 0

V M

V M

t

0

     logV u M tg   
0 0

V M t

V M 0

0
0

log M gV V u
M

t    

0
0 log MV V u g

M
t   

This gives the velocity of the rocket at any instant of time t. 
When the rocket starts from rest, V0=0,    

0log MV gtu
M

  

 Ignoring the gravity effect, 0log MV u
M

 . 

 4. Explain the working of a multistage rocket. 
Ans:  The working of the rocket depends on the law of 
conservation of momentum. According to the law of 
conservation of momentum, the gas jet emerging in the 
backward direction makes the rocket to move in the forward 
direction. The velocity attained by the rocket is nearly 4 
km/sec.. To obtain higher velocities, multistage rockets 
containing two or more stages are used the first stage of the 
rocket is used to acquire the acceleration of the rocket. When 
the fuel of the first stage is exhausted, it detaches from rocket 
and drops off. The velocity at this stage becomes the initial 
velocity of the second stage. Now the second stage starts 
functioning. The rocket gains acceleration and its velocity 
goes on increasing. The removal of the excess mass contained 
in the first stage considerably helps in attaining the higher 
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velocity. When the fuel of the second stage is exhausted, it 
also detaches from the rocket. The velocity acquired so far by 
rocket is less than the escape velocity (11.2 km/sec.). Finally 
the third stage of the rocket starts with the required velocity. 

 5. Explain the terms impact parameter, scattering cross-
section. 

Ans: Impact Parameter: Consider a positive particle, like a 
proton or an   particle, 
approaching a massive 
nucleus N of an atom, as 
shown in fig. Due to 
Coulomb force of 
repulsion, the particles 
follow a hyperbolic path 
AB with nucleus N as its 
focus. In the absence of the repulsive force, the particle would 
have followed the straight-line path AC. As shown in figure, 
p is the perpendicular distance from the nucleus N to the 
original direction AC of the particle. The distance NM = p is 
called the impact parameter. 

Thus impact parameter is defined as the closest distance 
between nucleus and positively charged particel projected 
towards it. This is also known as collision parameter. 
Scattering Cross-
Section: When  
particles are projected 
into a thin metal foil, 
they are deflected or 
scattered in different 
direc-tions.  Let N be 

N
O

P

M

A

B

C

U ndevia ted
path A ctual pa th

dN

d

N

Incident beam

Scatterer

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the incident intensity (number of incident particles crossing 
per unit time a unit surface placed perpendicular to the 
direction of propagation).  Suppose dN be the number of 
particles scattered per unit time into solid angle d  located in 
the direction   and   with respect to the bombarding 

direction.  The ratio dN
N

is called scattering cross section. 

Thus the scattering cross section in a given direction is 
defined as the ratio of number of scattered particles into solid 
angle d  per unit time to the incident intensity. 

 6. Explain Rutherford scattering and derive an 
expression for angle of deviation. 

Ans: 

Consider a nucleus of charge Ze (Z is atomic number) 
stationary at a point N and an    particle of mass m, change 
2e and velocity V0 approaching along the direction AO as 
shown in fig. As   particle moves, it comes closer to the 
nucleus and experiences a repulsive force. With this result, 
the velocity of   particle decreases.  In the absence of this 
repulsion, it would have followed a straight path but due to 
Coulombic force of repulsion, it follows a hyperbolic path AB 
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with nucleus as its focus.  The line AO and PO are the 
asymptotes of the hyperbola and represent approximately the 
initial and final directions of   particle.  In the part of 
journey AC, the velocity of   particle goes on decreasing, 
while in the part CB its velocity goes on increasing till it 
reaches its original velocity V0.  In the fig., p is the impact 
parameter.  The angle of deviation scattering angle is  . 
 Considering the case when   particle is directed 
straight towards the nucleus so that p = 0.  In this case, the 
particle will be stopped at a distance b from the nucleus due 
to repulsive force and retraces its path i.e. 180o  .  The 
distance b is known as the distance of closest approach. 
 The electrostatic potential at a distance b due to nucleus 

                = 
1

4 o

Ze
b 

. 

 Hence the potential energy of    particle at a distance 

b from the nucleus = 
2

0 0

1 22
4 4

Ze Zee
b b 

 
   

. 

 (where 2e is the charge on   particle.) 
 When the   particle is momentarily stopped at a 

distance b, its kinetic energy 2
0

1
2

mv  is completely converted 

into its potential energy 
2 2

2
0 2

0 0 0

1 2. .,
2 4

ze Zei e mv b
b mv 

  
 

     ….. (1) 

      Consider the case in which 0p  .  In this case the  
  particle is deflected through an angle which is less than 
1800 and traverses a hyperbolic path.  Let V be the velocity of 
   particle at the vertex, C. 
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 Angular momentum of    particle at A = m 0v P 
 ( Angular momentum = mass  velocity  distance) 
 Angular momentum of    particle at C  
                            =  mv  (NC) = m v d       (where NC = d) 

0m v P m v d  0v pv
d

   ….. (2) 

 Kinetic energy of    particle at  A 2
0

1
2

mv

 Kinetic energy of    particle at  C 21
2

mv

 Potential energy of    particle at C  
2

0 0

1 2
4 2

Ze e Ze
d d 
     

According to the conservation of energy, 
2

2 2
0

0

1 1
2 2 2

Zemv mv
d

 


2
2 2

0
0

Zev v
md

  

2

2 2 20
0 0 1bv bv v v

d d
      
 

 ….. (3)    from (1) 

 Substituting the value of v from eq. (2) in eq. (3), we get    
 2 2

2 20
0 02 1

d bv p bv v
d d d

    
 

 2p d d b    ….. (4) 
 From  the properties of hyperbola, 
 Eccentricity of hyperbola = e = sec 
 Focal length ON = e OC = a sec          (where OC = a) 
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 From figure ON = p cosec 

 a sec   = p cosec   a = p cot 
 From figure NC = NO + OC 
  = a sec   + a= a (1+sec )     

 d = p cot   (1 + sec )     ( a = p cot  ) 

1 cot sin 1 cos 1cot
sin sin sin

d p p p  
  

                   
22cos

2 cot
22sin cos

2 2

p p




  

cot
2

d p 
   ….. (5) 

 Substituting this value of d in eq. (4), we have 
   24 p d d b  

2 cot  cot   b
2 2

p p p     
 

cot  cot   b
2 2

p p     
 

2cot  cot 
2 2

p p b 
   2 cot cot

2 2
b p p 

  

2cot 1
2 cot tan

2 2cot
2

p
b p


 



         
 

2 2cos sin cos sin
2 2 2 2

sin cos sin cos
2 2 2 2

p p

   

   

      
     

   
   
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cos2 2 cot
sin

p p 


 

2 cot
2

p     
 

 From fig., 
2

    
 

2 cot 2 tan
2 2 2

p p      
 

tan
2 2

b
p


   ….. (6) 

 Substituting the value of b from eq. (1) in eq. (6) we get 
2

2
0 0

tan
2 2

Ze
mv p







  ….. (7) 

 This equation gives the scattering angle .

 7. Define rigid body.  Derive rotational kinematics 
relations. 

Ans: A body which does not undergo any change in shape or 
size by the application of external forces is called rigid body.      
            A rigid body can be defined as a solid and fixed.  The 
distance between the particles is not disturbed by any external 
forces applied. 
Rotational Kinematics Relations: 
 Consider a rigid rotating body with initial angular 
velocity o . Let   be its angular velocity after a time ‘t’.  
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 Let    be the angular displacement and ' '  be its angular 
acceleration. 
 I. To derive o t   

   We have angular acceleration 
d
dt
  d dt  

   Integrating between initial and final values, 

   0
0

o
o

t
td dt t







      
0 t     o t    

 II. To derive 21
2ot t   

   Integrating between initial and final values,  

0
0 0 0

 dt
t t

d dt t


     

   
2

00 0
02

t
t tt  

 
    

 
2

0
1
2

t t    

   To derive  2 2
0 2   

   We have (1) 0
0 t t    




    

   (2) 2
0

1
2

t t    

2
0 0

0
1
2

     
 
         

   
2 2 2 2

0 0 0 02
2

     
 
  

  
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2 2 2

0 0 0 02 2 2
2

      


    


2 2
02    

2 2
0 2    

 8. Derive the equation of motion for a rotation body. 
Ans:  Consider the case of a rigid body rotating with angular 
velocity   about a fixed axis passing through point O.  Every 
particle in the body moves in a circle with 
its center on the axis of rotation.  Now 
consider a particle of mass m at P. Let its 
position vector be r with respect to O.  
The linear velocity of particle P will be 
v r  .  Its  direction is tangential to 
the circle at point P and perpendicular to 
r.  The linear momentum of the particle is 
m v. The angular momentum is the 
moment of this linear momentum i.e., 
l r mv 


.  The direction of l


is
perpendicular to both r and v.
 The total angular momentum of the whole body is given 
by 

L l m r v    

 mr r      … (1)     v r 

Using the relation,     
   a b c a c      ,b a b c   the equation can be written as 

,           L m r r r r       
 

  2L m r r r      
   … (2) 
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Let angle SOP  . The component of r along the axis of 
rotation will be r cos . Hence component of L along the axis 
of rotation has a magnitude. 

2
0 cos cosL m r r r       

2 2 2cosm r r      
 2 2 2 21 cos sinmr mr       

2
0mr  

Where 0 sinr r 
here 0r   distance of the particle from axis of rotation. 

 2
0I mr 

 0L I  … (3) 
Differentiating eq. (3) w.r.t. time, we get 

0dL dI
dt dt


   (I being constant) … (4) 

   But 0L r mv  

 0dL dr m v r F
dt dt

         … (5) 

 (r F  is the moment of force or torque) 
Comparing eqs. (4) and (5), we get 

dI
dt
    … (6) 

This is the equation of motion of rigid body. 

 9. Explain about angular momentum and Moment of 
inertia tensor. 

Ans:  The angular momentum for ith particle may be written 

as    i i iii iL m r v m r r        
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   i i i iiL m r r r r         … (1) 

 Consider the general case for which 0ir   . For this 
consider the XYZ coordinate system fixed in the body.  Now 
we consider the component form of eq. (1) 
Here   and = i x y zr i x j y k z j k       

      . .i i i
r r i x j y k z i x j y k z     

 2 2 2
i i ix y z  

  2 2 2 ii i i i x y zL m x y z j k         

  i x i y i z ix y z i x j y k z       

 2 2)i i i x i i y i i zm y z x y x z i      
 2 2 )i i y i i x i i zx z x y y z j       2 2 )i i z i i xx y x z  

 ]i i yy z k  … (2) 

We know that =i x y zL L j L k L 
Comparing eqs. (2) and (3), we get 

     2 2
1x i i i x i i i y i i zL m y z m x y m x z          

     2 2
1y i i i y i i i x i i zL m x z m x y m x z          

     2 2
1z i i i z i i i x i i yL m x y m x y m x z          

… (3) 
     The component of L  in X direction involves three 
separate quantities.  The quantities depend on the 
distribution of mass in the body and on instantaneous 
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orientation of the direction of the angular velocity of the 
body relative to X, Y, Z axes.  These quantities are known 
an inertial coefficients of the moment of inertia of a 
rotating body whose angular velocity vector changes with 
time. Thus 

   2 2 2 2
xx i i i i i iI m y z m r x    

xy i i iI m x y  

xx i i iI m x z 

xx i i iI m x z   … (4) 
These are called inertial coefficients. 
In terms of inertial coefficients eq. (3) can be written as 

x xx x xy y xz zL I I I    

Similar y xy x yy y yz zL I I I      … (5) 

z zx x zy y zz zL I I I    

The matrix form of eq. (6) is given by 

x xx xy xz x

y yx yy yz y

z zx zy zz z

L I I I
L I I I
L I I I





    
         
        

 … (6) 

 The diagonal elements Ixx, Iyy and Izz are called as 
principal moment of inertia around X, Y and Z axes 
respectively.  The other six terms i.e., , , ,xy xz yz zxI I I I  and 

zyI are called as off diagonal terms or products of inertia. 
Eq. (6) can be expressed by using symbols 1, 2, 3 for x, y, 
z respectively.   

Thus 
3

1
; 1,2 and 3V

V
L I v  



   … (7) 
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The more elegant vector form of eq. (7) is  L I 



 Where   is the vector with three components ,x y 

and z  and I


 stands for an operator called as tensor. 

 10. Derive Euler’s equations of a rotating body. 

Ans:  The torque d L
dt

 
  … (1) 

 The motion of the rotating body may also be considered 
when the axes are attached to rotating body.  As these axes 
are rotating with rotating body, this constitutes a non inertial 
frame with respect to the axes fixed in the space.  We can 
transform the equations of motion of rotating body from body 
coordinates (non-inertial) to space coordinates(inertial). 

 ... ... ...
space body

d d
dt dt

        
   

i.e., d L d L L
dt dt


   

     
   space body

 … (2) 

Where   is the angular velocity of rotating frame. 

From eqs. (1) and (2),   d L L
dt

     … (3) 

Where L refers to the rotating frame. 
 If the body is symmetric, its axes of rotating coincide 
with the principal axes of symmetry.  Denoting the body-axes 
as 1,2 and 3 instead of x, y and z, the rotating around 1-axis of 
symmetry as scalar can be expressed as 

1 2 3 3 2
dL L L
dt

      … (4) 
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Because 1 2 3

1 2 3

i j k
L

L L L
    

     2 3 3 2 3 1 1 3 1 2 2 1i L L j L L k L L          
From eq. (4) 

 1
1 1 2 3 3 3 2 2

dI I I L I
dt
        

 1
1 1 3 2 2 3

dI I I
dt
       … (5) 

Similarly, scalar component equations along 2-zxis and 3-axis 
can be written as  

 2
2 2 1 3 1 3

dI I I
dt
     … (6) 

and  3
3 3 2 1 1 2

dI I I
dt
     … (7) 

Equations (5), (6) and (7) are known as Euler Equation of 
rotational motion for a right body fixed at one point. 
Equations (5), (6) and (7) in terms of x, y and z axes can be 
expressed as 

 x
x x z y y z

dI I I
dt
    

 y
y y x z x z

d
I I I

dt


    

and  z
z z y x x y

dI I I
dt
    

 The above equations can be written in the following 
form for symmetry 
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 x
x x z y y z

dI I I
dt
   

 y
y y x z x z

d
I I I

dt


   

and  z
z z y x x y

dI I I
dt
   

 11. Explain the precession of a spinning top.  Derive an 
equation for processional velocity. 

Ans:  A symmetrical body rotating (or spinning) about an axis 
which is fixed at one point is called top.  Fig. shows a top 
spinning about its axis of symmetry with angular velocity  .  
The point O of this axis is fixed and is taken as the origin of 
an inertial reference frame.  We know that the axis of 
spinning top moves around the vertical axis OZ, sweeping out 
a cone.    The rotation of the axis of rotation of the spinning 
top is called 
precession.  The axis 
about with the 
direction of rotation 
of the body processes 
is called the axis of 
precession.  

Let at any 
instant the axis of the 
tope makes on angle 
  with the vertical 
axis OZ and its 
angular momentum is L. 
 Torque and acceleration: Let C can be center of mass 
of the top with position vector r with respect to O.  The 
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weight of the top mg acts on the top vertically downwards 
from C due to earth’s gravitational pull.  So the torque exerted 
by the force mg on the top about O can be written as , 

r F r m g    
The scalar magnitude is given by 

 0sin 180 sinr mg r mg      … (1) 
And its direction is perpendicular to the plane containing r
and mg obtained by right hand rule.  This is shown in fig.  
Thus the torque   is perpendicular to L i.e., perpendicular to 
the axis of rotation of the top. 
 The torque produces an angular acceleration   in its 
direction (as = 1  ) i.e, in direction perpendicular to  . 
Due to this angular acceleration ,   changes in direction but 
not in magnitude. So the axis of top and hence , L  and r all 
processes about OZ. 
 The angular momentum of body is conserved only 
when the external torque acting on it is zero.  Here a torque 
acts on the top and hence its angular momentum will change.  
The change will take place in the direction of the torque i.e., 
perpendicular to L. Let in a short time t  the torque 
produce a change L  in angular momentum.  Then 

L L t
t

 
    


 … (2) 

 After a time ,t  the angular momentum is L L  . 
Since L  is perpendicular to L and is assumed to be very 
small in magnitude compared to L, the new angular 
momentum L L   has a magnitude  L but in different 
directions.  This means that angular momentum remains 
constant in magnitude but varies in direction.  As the torque 
vector completes a circle in X-Y plane, the vector L 
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completes a cone in space with its axis as the Z-axis of the 
inertial frame.  In this way vector L always lies along the axis 
of rotation of the top, the axis of rotation itself rotates about a 
vertical axis (Z-axis), and sweeps out a cone whose vertex is 
the fixed point O.  The motion of the axis of top is called 
precession of the top. 
Processional Velocity :  p
 The angular speed p  with which the top precesses 
about the Z-axis can be calculated as follows : 
 Let   be the angle turned by the head of angular 
momentum vector L in the time ,t  the rate of precession. 

p t
 




From fig. 
sin sin

BC L L
AC OC L


 

 
   

 OC L L L   

sin . sinp
L

L t L


 


  


 /L t   

Substituting the value of magnitude of   from eq. (1), we get  
sin

sinp
m g r m g r m g r

L L I


 
    … (3) 

 12. Explain the working of a Gyroscope. 
Ans: Gyroscope : If the fixed point, about which a 
symmetrical body the body, then it is known as gyroscope.  
The gyroscope is shown in fig. 
 The gyroscope consists of a large, heavy wheel whose 
moment of inertia is very large.  The wheel can rotate freely 
in any direction about an axle passing through its center of 
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mass.  This is 
achieved by double 
pivot provided in 
two circular rings R1

and R2 placed at the 
top of a stand F.  In 
this way the wheel 
and axle can turn 
freely about any one 
of the mutually 
perpendicular axes.  
When the wheel is 
rotating at a high 
speed, the axis of 
rotation remains the 

same relative to the frame even it the orientation of the frame 
F is changed.  If however, any torque is applied perpendicular 
to the axis of rotation, there will be a precession of the axis.  
A change in the rate of precession causes the spin axis of the 
wheel to rise or fall.  Now the spin axis starts oscillating up 
and down about its mean position. This type of motion is 
called nutation. We known that the rate of precession is 
inversely proportional to the angular momentum  I  of the 
wheel and the wheel has large moment of inertia, so it suffers 
a very small precession.  In this way a greater stability of the 
axis of rotation can be achieved by increasing the moment of 
inertia of the wheel and the speed of rotation.  The gyroscope 
is a device characterized by greater stability of its axis of 
rotation. 
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 13. Explain the Precession of the equinoxes 

Ans:     We know that equatorial plane of the earth and the 
plane of its orbit round the Sun are inclined to each other at an 
angle 23.50.  The two planes intersect at points A and B as 
shown in fig. Point A is known as vernal equinox while point 
B is known as autumnal equinox.  The earth in one complete 
round about the sun crosses point A (vernal equinox) at about 
21st March and point B (autumnal equinox) at about 22nd

September. The line joining the points A and B is known as 
line of equinoxes.  At equinox day and night are equal. 

We know that the earth is not a perfect sphere but bulges out 
at the equator.  Further the gravitational attraction due to the 
sun and the moon on the equatorial bulge of the earth give 
rise to a torque as the two forces are not equal this torque 
makes the axis of earth to process.  As the earth acts like a 
top, its precessing axis describes a circular cone relative to the 
pole star assumed to be fixed.  This precessional motion of 
the earth’s axis causes a change in the direction of the line of 
equinoxes which is called the precession of equinoxes.  
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 14. Explain the Precession of atom and nucleus in 

magnetic field. 
Ans: Many atomic and nuclear systems with a magnetic 
moment also have angular momentum and effective internal 
electric current proportional to their angular momentum. 
Nuclei  precess around the magnetic field for essentially the 
same reasons that tops or gyroscopes precess around a 
gravitational field.  Larmor’s precession is the precession of 
the magnetic moment of an object about an external magnetic 
field 
1) Both gyroscopes and nuclei possess angular momentum. 

 For the gyroscope, angular momentum results from a 
flywheel rotating about its axis.  For the nucleus, angular 
momentum results from an intrinsic quantum property 
(spin). 

2) Momentum is also sometimes called inertia. Objects 
possessing momentum have a tendency to maintain their 
motion unless acted upon by an external force.  For 
example, a speeding truck has a great deal of (linear) 
momentum and cannot easily be induced to change its 
speed or direction. Angular momentum behaves similarly, 
conferring on the nucleus or gyroscope a strong resistance 
to changing its orientation or direction of rotation. 

3) Static gravitational and magnetic fields create a torque or 
"twisting force" acting perpendicular to both the field and 
the direction of the angular momentum. The gyroscope or 
nucleus does not "tip over" but is instead deflected into a 
circular path perpendicular to the field. 

4) The resultant circular motion is called precession. 
Precession occurs at a specific frequency denoted either 
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by ωo (called the angular frequency) or fo (called the cyclic 
frequency). 0 02 f 

5) The precession frequency of a gyroscope is a function of 
the mass and shape of the wheel, the speed of wheel 
rotation, and the strength of the gravitational field.  The 
precession frequency of a nucleus is proportional to the 
strength of the magnetic field (Bo) and the gyromagnetic 
ratio (γ), a particle-specific constant incorporating size, 
mass, and spin. Then  the Larmor’s relationship, given by 
the equation:  f0 =  Y Bo 

SHORT ANSWER QUESTIONS 

 15. State  the Newton’s laws of motion. 
Ans: First law:

Every body continues in its state of rest or of uniform 
motion in a straight line unless an external force acts on it to 
change that state. 
Second law:  

The rate of change of momentum of a particle is equal 
to the force acting on it and takes place in the direction of 
force. 
Third law:   
 To every action there is always an equal and opposite 
reaction.

 16. what is a  variable mass system. Explain the motion 
of a rocket 

Ans:  If the mass of the system varies with time, then it is 
called variable mass system.  
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 Ex:  motion of a rocket. 
 The motion of rocket is an example of system of 
variable mass. The rocket consists of a combustion chamber 
in which liquid or solid fuel is burnt. When the fuel is burnt, 
the pressure inside the combustion chamber rises very high. 
Due to this high pressure hot gasses are expelled from the tail 
of the rocket. Then according to the law of conservation of 
momentum, the rocket moves in the direction opposite to the 
direction of hot gas jet. As the mass of the fuel inside the 
rocket decreases with time, the velocity of the rocket 
increases.    

The velocity of the rocket at any instant of time t is 

given by, 0
0log MV u

M
V gt   

When the rocket starts from rest, V0=0,    
0log MV gtu

M
  

 Ignoring the gravity effect, 0log MV u
M

 . 

 17. Explain the working of a multistage rocket. 
Ans:  The working of the rocket depends on the law of 
conservation of momentum. According to the law of 
conservation of momentum, the gas jet emerging in the 
backward direction makes the rocket to move in the forward 
direction. The velocity attained by the rocket is nearly 4 
km/sec.. To obtain higher velocities, multistage rockets 
containing two or more stages are used the first stage of the 
rocket is used to acquire the acceleration of the rocket. When 
the fuel of the first stage is exhausted, it detaches from rocket 
and drops off. The velocity at this stage becomes the initial 
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velocity of the second stage. Now the second stage starts 
functioning. The rocket gains acceleration and its velocity 
goes on increasing. The removal of the excess mass contained 
in the first stage considerably helps in attaining the higher 
velocity. When the fuel of the second stage is exhausted, it 
also detaches from the rocket. The velocity acquired so far by 
rocket is less than the escape velocity (11.2 km/sec.). Finally 
the third stage of the rocket starts with the required velocity. 

 18. Explain the terms impact parameter, scattering cross-
section. 

Ans: Impact Parameter: Consider a positive particle, like a 
proton or an   particle, 
approaching a massive 
nucleus N of an atom, as 
shown in fig. Due to 
Coulomb force of 
repulsion, the particles 
follow a hyperbolic path 
AB with nucleus N as its 
focus. In the absence of the repulsive force, the particle would 
have followed the straight-line path AC. As shown in figure, 
p is the perpendicular distance from the nucleus N to the 
original direction AC of the particle. The distance NM = p is 
called the impact parameter. 

Thus impact parameter is defined as the closest distance 
between nucleus and positively charged particle projected 
towards it. This is also known as collision parameter. 

Scattering Cross-Section: When   particles are 
projected into a thin metal foil, they are deflected or scattered 
in different directions.  Let N be the incident intensity 

N
O

P

M

A

B

C

U ndev ia ted
path A ctua l pa th
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dN

d

N

Incident beam

Scatterer


(number of incident particles crossing per unit time a unit 
surface placed perpendicular to the direction of propagation).  
Suppose dN be the 
number of particles 
scattered per unit 
time into solid angle 
d  located in the 
direction   and 
with respect to the 
bombarding direction.  
The ratio dN

N
is called scattering cross section. 

Thus the scattering cross section in a given direction is 
defined as the ratio of number of scattered particles into solid 
angle d  per unit time to the incident intensity. 

 19. Define rigid body.  Mansion rotational kinematics 
relations. 

Ans: A body which does not undergo any change in shape or 
size by the application of external forces is called rigid body.      
            A rigid body can be defined as a solid and fixed.  The 
distance between the particles is not disturbed by any external 
forces applied. 
Rotational Kinematics Relations: 
  I. o t   

  II. 21
2ot t   

  III  2 2
0 2   
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 20. Give Euler’s equations of a rotating body. 

Ans:

 x
x x z y y z

dI I I
dt
   

 y
y y x z x z

d
I I I

dt


   

and  z
z z y x x y

dI I I
dt
   

These are the Euler’s equations of a rotating body 

 21. Explain the precession of a spinning top.   
Ans:  A symmetrical body rotating (or spinning) about an axis 
which is fixed at one point is called top.  Fig. shows a top 
spinning about its axis of symmetry with angular velocity  .  
The point O of this axis is fixed and is taken as the origin of 
an inertial reference frame.  We know that the axis of 
spinning top moves around the vertical axis OZ, sweeping out 
a cone.    The rotation of the axis of rotation of the spinning 
top is called precession.  The axis about with the direction of 
rotation of the body processes is called the axis of precession.  

 22. Explain the working of a 
Gyroscope. 

Ans: Gyroscope : If the fixed point, 
about which a symmetrical body the 
body, then it is known as gyroscope.  
The gyroscope is shown in fig. 
 The gyroscope consists of a 
large, heavy wheel whose moment of 
inertia is very large.  The wheel can 



UNIT–I (P1EM) 31 
rotate freely in any direction about an axle passing through its 
center of mass.  This is achieved by double pivot provided in 
two circular rings R1 and R2 placed at the top of a stand F.  In 
this way the wheel and axle can turn freely about any one of 
the mutually perpendicular axes.  When the wheel is rotating 
at a high speed, the axis of rotation remains the same relative 
to the frame even it the orientation of the frame F is changed.  
If however, any torque is applied perpendicular to the axis of 
rotation, there will be a precession of the axis.  A change in 
the rate of precession causes the spin axis of the wheel to rise 
or fall.  Now the spin axis starts oscillating up and down 
about its mean position. This type of motion is called 
nutation. We known that the rate of precession is inversely 
proportional to the angular momentum  I  of the wheel and 
the wheel has large moment of inertia, so it suffers a very 
small precession.  In this way a greater stability of the axis of 
rotation can be achieved by increasing the moment of inertia 
of the wheel and the speed of rotation.  The gyroscope is a 
device characterized by greater stability of its axis of rotation. 

 23. Explain the Precession of the equinoxes 
Ans:     We know that equatorial plane of the earth and the 
plane of its orbit round the Sun are inclined to each other at an 
angle 23.50.  The two planes intersect at points A and B as 
shown in fig. Point A is known as vernal equinox while point 
B is known as autumnal equinox.  The earth in one complete 
round about the sun crosses point A (vernal equinox) at about 
21st March and point B (autumnal equinox) at about 22nd

September. The line joining the points A and B is known as 
line of equinoxes.  At equinox day and night are equal. 
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We know that the earth is not a perfect sphere but bulges out 
at the equator.  Further the gravitational attraction due to the 
sun and the moon on the equatorial bulge of the earth give 
rise to a torque as the two forces are not equal this torque 
makes the axis of earth to process.  As the earth acts like a 
top, its precessing axis describes a circular cone relative to the 
pole star assumed to be fixed.  This precessional motion of 
the earth’s axis causes a change in the direction of the line of 
equinoxes which is called the precession of equinoxes. 

SOLVED PROBLEMS 

 24. A rocket burns 0.02 kg of fuel per second ejecting it 
as a gas with a velocity of 10,000 m/sec. What force 
does the gas exert on the rocket ? 

Sol: The thrust (Freaction) exerted by the escaping gas on the 

rocket is given by reaction
dMF u
dt



Here u = 10,000 m/sec  and 
dM
dt

 = 0.02 kg. 

  Freaction = (10,000) (0.02) = 200 N 
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25.  A rocket of mass 20kg has 180 kg fuel.  The exhaust 

velocity of the fuel is 1.6 km/sec. Calculate the 
minimum rate of consumption of fuel so that the 
rocket may rise from the ground. 

Sol:  Given mass of the rocket = 20 + 180 = 200 kg and 
 u 1.6 1000 /u m s 

  The rocket may rise from the ground when the thrust on 
the rocket is equal to its own weight, i.e., 

dMu Mg
dt

 

 3
200 9.8
1.6 10

dM Mg
dt u


 



 1.225 kg/sec.dM
dt



 Rate of consumption of the fuel = 1.225 kg/sec. 

 26.  In the case of rocket motion, shown that greater the 
value of Mfuel / Mvehicle the greater be speed attained 
by rocked.  

Sol:  We known that 0
0 e log Mv v u

M
  . 

Where  V = velocity of the rocket at any instant, 
   V0 = initial velocity of rocket. 
   M0 = (initial mass of rocket + fuel), 
   M = mass of the rocket at any instant and 
   u = exhaust velocity of gases. 
  When the fuel is burnt out completely, the remaining 
mass corresponds to the mass of vehicle (Mv).  Above 
equation now can be written as 
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0
0 loge

MV V u
M

 

0
0 log 1 1e

v

MV u
M

 
    

 

0
0 log 1 V

e
V

M MV V u
M

 
    

 

0 log 1 fuel
e

vehicle

M
V u

M
 

   
 

  So, greater is the value of fuel

vehicle

M
M

, the greater is the 

speed attained by the rocket. 

 27.  A rocket having an initial mass M0 starts from rest. 
When it attains a velocity v, it mass becomes M. What 

is the ratio of 0M
M

when the velocity of exhaust gases 

is equal to  (numerically). 
Sol:  The velocity V of the rocket at any instant of time t is 
given by  

0
0 loge

Mv v u
M

    
 

  Given that  0 0,V u V 

0
e0 + V log  MV

M
   
 

 0 0log 1 2.717e
M M
M M

     
 
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 28.  An empty rocket weights 5000 kg and contains 

40,000 kg of fuel, if the exhaust velocity of the fuel is 
2.0 km/sec.  Find the maximum velocity gained by the 
rocket. (Given that log, 10 = 2.3, log10 3 = 0.4771. 

Sol:  Ignoring gravity effect, the velocity V of a rocket at 
anytime t is given by 

0
0 loge

MV V u
M

 

  According to the given problem 
0 00, 5000 40,000 45,000 .V M kg  

  M = 5000 kg     and     u = 2.0 km/sec. 

 max
450002 log
5000eV 

   22 log 3e  2 2 log 3e

 2 2 2.3 0.4771  
    = 4.4 km/sec. 

 29.  Suppose an engine of a rocket has to achieve a thrust 
of 3.3107N.  At what rate must the fuel be 
consumed? Assume that the exhaust velocity of the 
hot gas from engine is 2900 m/s.  

Sol:  Given,  force = 3.3107N 
We know that 

dMF u
dt

  or 
dM F
dt u



7 5 43.3 10 3.3 10 33 10
2900 29 29

dM
dt

  
  

4= 1.1×10  kg/sec
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 30. A rocket starts from rest with an initial mass M0 and 

its mass at burnt out is M.  Neglecting all external 
forces, find the ratio of (M0 / M) if the rocket speed is 
twice the exhaust speed. 

Sol:  0loge
Mu
M

    
 

Given that, 2u 

 02 loge
Mu u
M

   
 

 02 loge
M
M

   
 

 20M e
M



 31. A rocket having initial mass 240kg ejects fuel at the 
rate of 6 kg/s with a velocity 2 km/s vertically 
downward relative to itself. Calculate its velocity 25 
seconds after start, taking initial velocity to be zero 
and neglecting gravity. 

Sol:  Mass consumed in 25s = 6  25 = 150 kg 
 Remaining mass M = 240 – 150 = 90 kg. 

  Now,  0
0 loge

Mu
M

      
 

10 10
2400 2 2.3 log 4.6log 2.67
90

      
 

4.6 0.4265 1.9619 km/sec  
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 32. A rocket of mass 200 kg has 1800 kg of fuel.  The 

exhaust velocity of the fuel is 2.45 km/sec.  Calculate 
the minimum rate of consumption of fuel so that the 
rocket may rise from the ground.  Also calculate the 
ultimate vertical speed gained by the rocket, when the 
rate of consumption of the fuel is 20 kg/sec. 

Sol:  For the minimum rate of consumption of fuel so that the 
rocket may rise from the ground ,  
  Magnitude of thrust = Weight of rocket 


dMu Mg
dt




200 9.8

2.45 1000
dM Mg
dt u


 


=0.8 kg/sec 

  The time for consumption of all fuel = 
1800 90

20
 s 

    since the rate of consumption of fuel is 20 kg/sec. Now. 
0

max log  e
Mu g t
M

  

 3 20002.45 10 log 9.8 90
200e   

 32.45 10 2.303 882 5642.4 882    

     = 4760.4 m/s = 4.76 km/s 

 33. A rocket burns 0.05 kg of fuel per second and ejects 
the burnt gases with a velocity of 5000 m/s. Find the 
reaction. 

Sol:  .
dMReaction = 
dt rel

0.05 5000 250    N
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360 90sec.
4

t  

   Now  max 0 0log /eV V u M M gt  

400 9.8 900 2log
40 1000e

        
   

 102 2.303 log 10 0.882  

3.724 kg/sec.

 34. The stage of two stage rocket separately weight 100 
and 10 kg and contain 800 kg and 90 kg fuel 
respectively.  What is the final velocity that can be 
achieved with an exhaust velocity of 1.5 km/sec. ? 

Sol:  We know that    0
1 0 loge

MV V u
M

    
 

  For first stage, 0 800 90 100 10 1000M kg    

90 10 100 200M kg   

0 0V   and u = 1.5 km/sec. 

 1 e
10000 1.5 log 1.5log 5
200 eV     

 
101.5 2.3 log 5 2.415 km/sec.  

  This will be the initial velocity for the second stage.  
For second stage, 0 100 ,  M = 10kg,M kg

0 1V V  = 2.415 km/sec. Thus 

0
2 1 loge

MV V u
M

    
 
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1002.415 1.5log
10e

    
 

 102.415 1.5 2.3log 10    = 5.865 km/sec. 
 So, the final velocity achieved by the rocket = 5.865 km/sec. 

 35. A 6000 kg. rocket is set for vertical furing.  If the 
exhaust speed is 1000 m/sec, how much gas must be 
ejected each second to supply the thrust needed (a) to 
overcome the weight of the rocket, (b) to give the 
rocket an initial upward acceleration of 20 m/sec2 ? 

Sol:  a) To overcome the weight of rocket, 
 Magnitude of thrust = weight of the rocket 

dMu Mg
dt




6000 9.8 58.8 kg/sec.

1000
dM Mg
dt w


  

  Hence the rate of consumption of fuel is 58.8 kg/sec. 
 b) To given an initial upward acceleration of 19.6 m/sec2, 
the thrust on the rocket should be equal to the weight of the 
rocket plus the force required to produce the acceleration of 
19.6 m/sec2. 
  Hence, Magnitude of thrust = weight of rocket + M a 


dMu Mg Ma
dt

 

    6000 9.8 20
1000

 178.8 / .
M g adM Kg

d u
sec

t
 

  
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 36. A couple of 108 dynes cm is applied to a fly wheel of 

mass 10kg and radius of gyration 50 cm.  What is the 
resulting angular acceleration ? 

Sol: We know that 
2 and I = MKdC I I

dt
 

  8 210 10 1000 50 /d dt   
8

2
4 2
10 4 radians/sec

10 50
d
dt


  


 angular acceleration = 4 rad/sec2 

 37. The speed ofa particle moving along a circle of 
radius 20 cm increases at the rate of 10 cm/sec2.  If 
the mass is 200 gm, find the torque acting on it. 

Sol: The angular momentum L is given by L = mvr and 
dL dvmr
dt dt

   . 

Given m = 200 gm = 0.2 kg; r = 20 cm = 0.2 m and 
2 210 / sec 0.1 m/secdv cm

dt
 

0.2 0.2 0.1 0.004 N m     

 38. A sphere of mass 2.5kg and radius 0.5m is revolving 
without slipping on a horizontal road with a velocity 
of 2 ms-1.  Calculate its K.E. of motion. 

Sol: When a sphere rolls on a plane surface, without 
slipping, it has translational as well as rotational K.E. 

K.E. of translation = 2 21 1 2.5 2 5 joules
2 2
mv    
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K.E of rotation =  
2

2 21 1 2
2 2 5

vI mr v r
r

       
  



2 21 1 2.5 2 2 joules
5 5
mv    

Total K.E = 5 + 2 = 7J 
 39. A fly wheel of mass 500 kg and diameter 1m changes 

its angular frequency from 0 to 18 revolutions per 
minute during 5 seconds.  Find the torque. 

Sol: The moment of inertial 1 of the fly wheel is given by, 
2I MK  and 0.5K R m 

 2 2500 0.5 125I kg m  
  Initial angular velocity = 0 
  Final angular frequency in 5 sec = 18 r.p.m. 

 final angular velocity = 
18 2 7.2 / sec

5
rad 



Hence change in angular velocity in 5 sec.  = 7.2 0 
7.2 / secrad

Angular acceleration   change in angular vel 7.2
time 0.5

  
21.44 / secrad

The torque    given by 
125 1.44 565.4I p N m      . 

 40. A 20 kg object is accelerating on the circumference 
of a circle of radius 1.5m.  If the rate of increase in 
velocity is 0.5 m/s, find the torque acting on it. 

Sol: The angular momentum L is given by L = mvr 

  and 
dL dvmr
dt dt

  
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Given m = 20 kg; r = 1.5m   and dv/dt = 0.5 m/sec2 

20 1.5 0.5 1.5 .N m     

 41. A solid sphere of diameter 2 cm. having a moment of 
inertia 2x 10-6 kg. m2 about its diameter rolls without 
slipping with a velocity 5cm/ sec. Calculate the K.E. 
of rotation. 

Sol: K.E of rotation = 21
2
I  and v = r

22
6 6

2
1 5 1002 10 10
2 1 100

v
r

          
6 2 610 5 25 10 joule    

 42. A circular disc of 50 kg and radius 100 cm is 
mounted axially and made to rotate.  Calculate the 
K.E. it possesses when executing 100 rotations per 
minute.  

Sol: No. of rotations per min   = 100 
  No. of rotations per sec (n) = 100 / 60 = 5/3 

  Angular velocity     =  2 2 5 / 3n 

10 / 3 / secrad
The moment of inertia I of the circular disc passing through 
its centre and perpendicular to its plane is given by 

2 2
250 1250

2 2
MR II kg m

   

2
2  Kinetic energy 1 1 101250 70080 joules

of circular disc 2 2 3
I 

        
 
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 43. A car engine develops 75 KW power when rotating at 

a speed of 100 rpm.  What is the torque acting ?  
Sol: The power developed by the torque   exerted on a 
rotating body is given by  

P 
 /P 

75 75000 wattP KW 
 1000 / 60 2 

 100 / 3  rad/sec.

 
75000 750 3 716.3 joule

100 / 3


 


   

 44. Find the magnitude of the angular momentum of a 
cycle wheel of mass 2 kg and radius 0.5 m when 
rolling at a speed of 24 km ph. 

Sol: Given, M = 2 Kg, r = 0.5 m, V = 
5 12024 / sec.
8 18

m    
 

  L = ? 

  But  2 vL I Mr Mrv v r
r

      

22 0.5 120 6.667 kg.m  rad/sec
18

L      
 

 45. Find the orbital angular momentum of moon about 
the earth, given the mass of the moon = 7.36  1023

kg, average distance of the moon from the earth = 
3.84  108 m, and period of revolution of the moon = 
27.3 days. 

Sol: Angular velocity of moon w is given by, 2
t
 
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62 2.663 10  rad/sec.
27.3 24 60 60

    
  

Angular momentum of moon of mass m about the earth is 
given by 

 ( sinL r mv m r v mvr     
As the moon is revolving round the earth in circular orbit, 

090   and sin 1. 
 and v = rL mvr 

2mr 
Given 23 87.36 10 ; 3.84 10  andm kg r m   

62.663 10  rad/sec.  

Hence      223 8 67.36 10 3.84 10 2.663 10L     
35 2.889 10 secjoule  

 46. A fly-wheel of mass 10 kg. and radius of gyration 
0.25 m makes 3 revolutions per second. Find its K.E. 

Sol: The moment of inertia of the fly-wheel is given by 
2 2 210 0.25 0.625 kg mI MK   

and 2  n/t = 2 3/1=6  radians/sec.    
The K.E. of the fly-wheel is given by 

 221 1. 0.625 6 177.6 joules
2 2

K E I     

 47. A grind-stone has a moment of inertia 76 × 10
gm.cm2 about its axis. A constant couple is applied to 
the grind-stone is found to have a speed of 150 r.p.m 
in 10 sec. after starting from rest Calculate the 
couple. 

Sol: Initial angular velocity     = 0 
  Final angular velocity in 10 sec. = 150 r.p.m. 
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150 2 5  rad/sec

60
 



 Change of angular velocity in 10 sec.  
= 5 0 5  rad/sec.  

i.e., Angular acc = 2change in angular vel 5  rad/sec
time 10 2

 
 

 But couple = moment of inertia x angular acc. 

 Couple = 7 716 10 9.423 10  dyne.cm
2
   

 48. A disc of mass 2 kg rolls without slipping over a 
horizontal plane with a velocity of 4 ms-1.  Find the 
kinetic energy of the disc. 

Sol: When a circular disc rolls on a plane surface, without 
slipping, it has kinetic energy of rotation as well as 
translation. Hence 

Total K.E = 2 21 1
2 2
I Mv 

2 2 21 1 1  and  = v/r
2 2 2

Mr Mv     

 22 2 2 21 1 1 1/
4 2 4 2
Mr v r Mv Mv Mv   

2 23 3 2 4 24 joule
4 4
Mv    


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UNIT-II 

ESSAY QUESTIONS 

 1. Define a central force with examples.  Mention the 
properties of central forces. 

Ans: Definition :
A central force is defined as a force which always acts 

on a particle towards or away from a fixed point and whose 
magnitude depends only on the distance from the fixed point.  
This fixed point is known as the center of the force.  
 Let O be the center of force, which is taken as the origin 
of coordinate system. P is a particle whose polar coordinates 
are r and  .  The central force on particle P is expressed by F.  
Mathematically.  F can be expressed as 

 ˆF rf r  … (1) 
 Where f(r) is a function of the distance r of the particle 
from the fixed point and r̂ is a unit vector along the radius 
vector r of the particle with respect to that fixed point.  In 
case of two particles the magnitude of central force depends 
upon the distance of separation of two particles and the 
direction being along the line joining the particles. 
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Examples: (1) The gravitational force exerted on a 

particle by another particle which is stationary in an inertial 
frame of reference s a central force. 

1 2
2 2

1ˆm mF r F
r r

  

 Negative sign indicates that force is attractive.  The 
earth moves around the sun under a central force which is 
always directed towards the sun. 
 (2) The electrostatic force exerted on a charged particle 
by another stationary, charged particle is a central force.  The 
electrostatic force between two charges 1q and 2q separated at 
a distance r is given by 

1 2
2

0

1 .
4

q qF
r


 2

1F
r



 The electron in hydrogen atom moves under a central 
force which is always directed towards the nucleus. 
 (3) A particle attached to one end of a spring whose 
other end is stationary in an inertial frame of reference is an 
example of central force.  The elastic force acting on the mass 
is expressed as F K x  . 
 Where x is the distance of the mass from the unstretched 
position of the spring and K is spring constant. 
Properties of Central Force : 
(i) The general form of central force is represented by 

 ˆF rf r , where f(r) is a function of distance r of the 
particle from the fixed point and r is a unit vector along 
the radius vector r of the particle with respect to that 
fixed point. 

(ii) Central force is a conservation force i.e., the work done 
by the force in moving a particle from one point to 
another is independent of the path followed. 
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(iii) Under a central force, the torque acting on the particle is 

always zero. 
(iv) Under a central force, the angular momentum of the 

particle remains conserved. 
(v) Under a central force, the areal velocity of the particle 

remains constant. 
(vi) The central force is attractive when   0f r   i.e., 

negative and repulsive when   0f r   i.e., positive. 

 2. What is a conservative force? Show that the central 
force is conservative in nature. 

Ans: Aforce is said 
to be conservative 
when the work done 
by the force in 
moving a particle 
from a point A to a 
point B is 
independent of the 
path followed 
between A and B.  
Thus the work done 
by a conservative 
force between the 
points A and B is the same for all the paths.  The work done 
depends only on the particle’s initial and final position.  The 
work done by a conservative force along a closed path is zero. 
To prove that the Central force is a conservative force : 
 Consider two points A and B connected by two 
arbitrary paths 1 and 2, as shown fig. Let a particle moves 
from point A to point B along any paths under a central force 

r

r + dr

O

A

1d r


P
dr

dr

1P
1F

Path 1

B

Path 2

2F


2

1

2dr
Q

Q1
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which is directed away from a point O.  Taking O as the 
centre, draw to arcs of radii r and r + dr respectively.  These 
are shown by dotted lines in fig.  These arcs of the circles cut 
the paths 1 and 2 at P, P1 and Q, Q1 respectively, as shown.  
Let 1dr  and 2dr  be the displacement of the particle between 
the arcs along path 1 and path 2 respectively.  Let F1 and F2
be the central forces acting on the particle at points P and Q.  
By the definition of central force,F1 and F2 are equal because 
they are acting at the same distance from O.  Let 1  be the 
angle between F1 and dr1.Let 2  be the angle between F2 and 
dr2.  Then the projection of vectors 1dr  and 2dr  on 1F  and 2F
will be 1dr 1cos  and 2 2cosdr  .  These projections are equal 
to dr, 
 Hence 1 1 2 2cos cosdr dr dr  
  So 1 1 2 2. .F dr F dr
 (Because 1 1 1 1 1. cosF dr F dr   and 2 2 2 2 2.F dr F dr 
 In the same way we can obtain the same result by 
considering every path segment taken along path I and path II. 
 In general 

   1
. .

B B

A Path A Path II
F dr F dr 

 Thus the work done by the forces along the two paths is 
equal path I path IIW W . 
 In this way, the work done by central force acting on a 
particle moving from point A and Point B is independent of 
path.  Hence the central force is conservative. 

 3. Derive the equation of motion under a Central force. 
Ans: When a body moves under the action of a central force, 
the force is radial and is always towards a fixed point.  The 
radial acceleration is given by 
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 Radial acceleration = 
22

2
d r dr
dt dt

   
 

 … (1) 

 In case of a central force, there is no force acting on a 
particle perpendicular to r, i.e., transverse acceleration is zero. 

 Hence 21 0d dr
r dt dt

   
 

2 constantdr
dt


 

 Let 1u
r


1r
u

 

 Then 2
1 1d r d du

dt dt u u dt
    
 

2
1 du d
u d dt




    
 

2 d du dur h
dt d d


 
     
 

Where 2
2

d d hr h
dt dt r
 
  

Further, 
2

2
d r d duh
dt dt d

   
 

2

2 .d u dh
d dt




 
2 2

2 2
2 2 2.d u h d uh h u

d r d 
     .… (3) 

Substituting the value of 
2

2
d r
dt

 from eq. (3) in eq. (1), 

Radial acceleration = 
22

2 2
2

d u dh u r
d dt




    
 

2 2
2 2

2 4.d u hh u r
d r

  
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2

2 2 2 3
2

d uh u h u
d

  

Now force acting on the particle = mass x radial acceleration 
2 2

2 2 2 3 2 2 2 3
2 2

d u d uF m h u h u m h u h u
d d 

   
         

   
Negative sign indicates that the force is attractive 

2
2 2 2 3

2
d u Fh u h u p
d m

   

Where F/m = p is the force per unit mass 
2

2 2 2
d u Pu
d h u

      … (4) 

 This is the differential equation of the orbit of a particle 
moving under an attractive central force p per unit mass. 

 4. State and prove Kepler’s laws of planetary motion. 
Ans: First law: All planets revolve around the Sun in 
elliptical orbits, having the Sun as one of the foci.  

Second law: The radius vector joining the planet to the 
Sun sweeps equal areas in equal intervals of time.  (Or) The 
areal velocity of radius vector is a constant. 
  Third law: The square of the time period of revolution 
of the planet around the sun is directly proportional to the 
cube of the semi major axis of its elliptical path.

  Proof for the First law:consider a planet of 
massmrotating about the sun of mass M in an orbit of radius r. 
The gravitational force of attraction between them is given 

by,                            2
mMF G
r


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This force is directed towards the centre of the Sun.   
Acceleration of the planet towards the centre of the Sun  

= 2 2
Gm
r r


  Gm 

The radial acceleration of the planet = 
2

2
d r dr
dt dt

    

2

2

2 2
d r dr
dt dt r

     

2

… (1) 

The transverse acceleration of the planet = 21 d dr
r dt dt

 
  

For the motion under central force the transverse acceleration 
is zero.  

2 21 0d d dr r h which is aconstant
r dt dt dt

       

2
d h
dt r


   … (2) 

Let 2 2
1 1 1dr du du d dur h
u dt u dt u d dt d


 

    

2
2

d h hu
dt r
   

 


2 2 2
2 2

2 2 2
d r d du d u d d uh h h u
dt dt d d dt d


  

       
 … (3) 

 Substituting these values in the eq. (1),     
2

2 2
2 2 2

d u hh u r
d r r




     

2

2 2 2
2 2 2 2 2 3 2

2 3 2 2
d u h d uh u h u h u u
d r r d

 
 

       
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2 2

2 2 2 2 0d u d uu u
d h d h

 
 

         
 … (4) 

Let 
2 2

2 2 2
dx du d x d ux u

h d d d d


   
     

 
2

24 0d x x
d

   

The solution of this equation can be written as, cosx a 
where ,a  are constants. 

2

2 2 2
1cos cos 1 coshu a u a a

h h r h
    


 

         
 

2

2

1 cos
1

a h

r h






 
 

  
 
 
 

This is similar to the polar equation of the conic  
1 1 cos
r l

 


Comparing the two, semilatus rectum  
2hl




and eccentricity
2a h




If 1;  the conic is hyperbola           
If 1;  the conic is parabola 
If 1;   the conic is ellipse.        
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If the path is either parabola or hyperbola, the planet would 

pass away from the solar system and will never return to it. 
Hence all the planetary orbits are elliptical.  
     This verifies Kepler’s first law.   

Proof for the second law:  
let the planet moves from P 
to P1in the time dt. Now the 
area swept by the radius 
vector is,    

21
2

dA r d

1
2

areaof a triangle base height    
 


Areal velocity 21
2

dA dr
dt dt

    
    but 2 dr h constant

dt
    

 Areal velocity 
2

dA h constant
dt

 

This verifies Kepler’s  second law. 

Proof for the third law:  The time period of revolution of the 
planet T is given by, 

2

2

area swept in one revolution ab abT hareal velocity h
 

  

Where  a =semi major axis of the ellipse , 
 b = semi minor axis of the ellipse. 

Squaring on both sides,  
2 2 2

2
2

4 a bT
h




dr

1P P

r+dr

S
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But eccentricity  
2a h


    where Gm   and 2 dh r

dt


   are 

constants  2h
a


 

2 2 2 2 3 2
2 4 4a b a bT

a

 
 

  

2 2
2 3 2 34 bT a T a


 

    
 

This verifies Kepler’s third law 

 5. Explain the motion of satellites. 
Ans: Satellite:  Any relatively smaller body moving round  
relatively massive body is called as satellite and its closed 
path is called as orbit.  
Ex: Moon is a natural satellite of earth.   
Orbital velocity: The velocity of a satellite in its orbit is called 
orbital velocity. 
When a satellite of mass m rotates around earth in a circular 
orbit of radius r , with a velocity v, 

The centripetal force =  
2mv

r
,   gravitational force between 

earth and satellite = 2
G Mm

r
Where G = gravitational constant,   M= mass or the earth 

The gravitational force supplies the centripetal force,  
2

2
2

G Mm mv G M G Mv v
r r r r

    
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If g1 is the acceleration due to gravity at the orbit height  we 

have 1
2

G Mg
r



1v g r 
This is the expression for the orbital velocity of satellite 

revolving round the earth at a height h.  
If g is acceleration due to gravity on earth,  

2
2

G Mg G M gR
R

    so
2

1
2

g Rg
r



2 2

2
g R g Rv r v

r r
   

 
gv R

R h
 



If T is the period of revolution, 11

2 2 2r r rT
v gg r
    

In terms of R, h, g we have    
3
22 R h

T
R g

 


Angular momentum of the satellite, L = mvr =m G M
r

r= constant 
Hence the conservation of angular momentum holds good.

 6. Explain the basic idea of Global Positioning System 
(GPS). 

Ans: The Global Positioning System (GPS) is a satellite-
based radio navigation system developed and operated by the 
U.S. Department of Defence. GPS permits land, sea, and 
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flying users to determine their position, velocity and the time 
24 hours a day. It works in all weather conditions, and  
anywhere in the world.  The GPS signals are available to an 
unlimited number of users simultaneously. The GPS satellites 
can be used free of charge by anyone.
    Each GPS satellite transmits signals to equipment on the 
ground. GPS receivers passively receive satellite signals, but  
they do not transmit. GPS receivers require an unobstructed 
view of the sky, so they are used only outdoors and they 
might perform less well within forest areas or near tall 
buildings. GPS operations depend on a very accurate time 
reference, which is provided by atomic clocks at the U.S. 
Naval Observatory. Each GPS satellite has atomic clocks on 
board.  
     The Global Positioning System (GPS) uses a network of 
satellites which let people with GPS receivers pinpoint their 
location anywhere in the world.  TomTom is one of the first 
companies to make GPS technology available in an easy-to-
use form for everyone. 
Uses pf GPS :
1. GPS is an essential element of the global information 

infrastructure. The free, open, and dependable nature of 
GPS has led to the development of hundreds of 
applications affecting every aspect of modern life.  

2. GPS technology is now in everything from cell phones and 
wristwatches to bulldozers, shipping containers, and 
ATM's. 

3. GPS boosts productivity across a wide range of the 
economy, to include farming, construction, mining, 
surveying, package delivery, and logistical supply chain 
management.  
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4. Major communications networks, banking systems, 

financial markets, and power grids depend heavily on GPS 
for precise time synchronization. Some wireless services 
cannot operate without it. 

5. GPS saves lives by preventing transportation accidents, 
using search and rescue efforts, and speeding the delivery 
of emergency services and disaster relief. 

6. By the use of GPS the air transportation system in the next 
generation will enhance flight safety while increasing 
airspace capacity. GPS also advances scientific aims such 
as weather forecasting, earthquake monitoring, and 
environmental protection. 

7. GPS is used for national security, and its applications have 
major role in military operations. Nearly all new military 
resources from vehicles to weapons come equipped with 
GPS. 

 7. Explain the concept of weightlessness. 
Ans:Weightlessness is only a sensation, it is not a reality 
corresponding to an individual who has lost weight. 
Weightless sensations exist when all contact forces are 
removedAstronauts orbiting the earth, persons in  a freely 
falling elevator are weightless. They are weightless because 
there is no external contact force pushing or pulling on them. 
In these cases, gravity is the only force acting on their body. 
But it cannot be felt and would not provide any sensation of 
their weight. But for certain, the orbiting astronauts weigh 
something. There is a force of gravity acting upon their body. 
It is the force of gravity that supplies the centripetal force in 
circular motion. The force of gravity is the only force acting 
upon their body. The astronauts are in free-fall. Similar to the 
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freely falling elevator, the astronauts and their surroundings 
are falling towards the Earth under the only influence of 
gravity. Their tangential velocity allows them to remain in 
orbital motion while the force of gravity pulls them inward. 

Many people believe that orbiting astronauts are 
weightless because they do not experience a force of gravity. 
If the absence of gravity is the cause of the weightlessness of 
orbiting astronauts, it would be in violation of circular motion 
principles. Hence there must be a force of gravity for there to 
be an orbit. 

The astronauts are weightless because the force of gravity 
is reduced in space. With less gravity, there would be less 
weight and thus they would feel less than their normal weight. 
The force of gravity acting upon an astronaut on the space 
station is certainly less than on Earth's surface. 

 8. Explain the Physiological effects of astronauts. 
Ans:Astronauts possess a wide range of technical skills 
related to the space mission and a of behavioural capability 
that enable them to function in a space orbit environment. For 
an astronaut  the changes in normal physiology due to 
abnormal environments are called acclimation.The ground-
based supporting team works to maintain the 
Physiologicalpiece of the astronauts by providing support via 
video teleconferences with family, private psychological 
conferences and provision of recreational material such as 
DVDs, books and musical instruments. 

The space-flight environment  and long-duration space 
flight can add to tiredness and sleep arrears. So by providing 
uninterrupted sleep periods, noiseless sleep stations and the 
sleeping medications can reduce the amount of tiredness 
experienced by the astronaut. 
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Acclimation of the cardiovascular system to 

weightlessness is difficult and not completely understood. 
Control mechanisms involving the autonomic nervous 
system, cardiac functions and peripheral vasculature all play a 
role. 

Support is provided after landing to astronauts by health 
and performance teams. A multinational behaviour and 
performance committee has made a number of important 
recommendations to the enhance crew performance.  They 
have implemented family-support programs to help with the 
many issues faced by astronauts and their families. 

SHORT ANSWER QUESTIONS 

 9. Define a central force . Mention the properties of 
central forces. 

Ans: Definition :  A central force is defined as a force 
which always acts on a particle towards or away from a fixed 
point and whose magnitude depends only on the distance 
from the fixed point.  This fixed point is known as the center 
of the force.  

Examples: (1) The gravitational force exerted on a 
particle by another particle which is stationary in an inertial 
frame of reference s a central force. 
 (2) The electrostatic force exerted on a charged particle 
by another stationary, charged particle is a central force.   
Properties of Central Forces : 
 i) The general form of central force is represented by 

 ˆF rf r , where f(r) is a function of distance r of the 
particle from the fixed point and r is a unit vector along 
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the radius vector r of the particle with respect to that 
fixed point. 

 ii) Central force is a conservation force i.e., the work done 
by the force in moving a particle from one point to 
another is independent of the path followed. 

 iii) Under a central force, the torque acting on the particle is 
always zero. 

 iv) Under a central force, the angular momentum of the 
particle remains conserved. 

 v) Under a central force, the areal velocity of the particle 
remains constant. 

 vi) The central force is attractive when   0f r   i.e., 

negative and repulsive when   0f r   i.e., positive. 

 10. What is a conservative force?  
Ans: A force is said to be conservative when the work done 
by the force in moving a particle from a point A to a point B 
is independent of the path followed between A and B.  Thus 
the work done by a conservative force between the points A 
and B is the same for all the paths.  The work done depends 
only on the particle’s initial and final position.  The work 
done by a conservative force along a closed path is zero.  

 11. State Kepler’s laws of planetary motion. 
Ans: First law: All planets revolve around the Sun in 
elliptical orbits, having the Sun as one of the foci.  

Second law: The radius vector joining the planet to the 
Sun sweeps equal areas in equal intervals of time.  (Or) The 
areal velocity of radius vector is a constant. 
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  Third law: The square of the time period of revolution 
of the planet around the sun is directly proportional to the 
cube of the semi major axis of its elliptical path.

12. State and prove Kepler’s second law. 
Ans: Second law: The radius vector joining the planet to the 
Sun sweeps equal areas in equal intervals of time.  (Or) The 
areal velocity of radius vector is a constant.

Proof for the second law:  
let the planet moves from P 
to P1in the time dt. Now the 
area swept by the radius 
vector is,    

21
2

dA r d

1
2

area of a triangle base height    
 


Areal velocity 21
2

dA dr
dt dt

    
    but 2 dr h constant

dt
     

 Areal velocity 
2

dA h constant
dt

 

This verifies Kepler’s  second law. 

13. State and prove Kepler’s third law
Ans: Third law: The square of the time period of revolution 
of the planet around the sun is directly proportional to the 
cube of the semi major axis of its elliptical path.
Proof for the third law:  The time period of revolution of the 
planet T is given by, 

dr

1P P

r+dr

S

UNIT–II (P1EM) 63 
2

2

area swept in one revolution ab abT hareal velocity h
 

  

Where  a =semi major axis of the ellipse , 
 b = semi minor axis of the ellipse. 

Squaring on both sides,  
2 2 2

2
2

4 a bT
h




But eccentricity  
2a h


    where Gm   and 2 dh r

dt


   are 

constants  2h
a


 

2 2 2 2 3 2
2 4 4a b a bT

a

 
 

  

2 2
2 3 2 34 bT a T a


 

    
 

This verifies Kepler’s third law 

 14. Explain the terms satellite and orbital velocity.. 
Ans: Satellite:  Any relatively smaller body moving round 
relatively massive body is called as satellite and its closed 
path is called as orbit.  
Ex: Moon is a natural satellite of earth.   

Orbital velocity: The velocity of a satellite in its orbit is called 
orbital velocity. 

Orbital velocity G Mv
r


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At a height h orbital velocity 
 

gv R
R h




If T is the period of revolution, 11

2 2 2r r rT
v gg r
    

In terms of R, h, g we have    
3
22 R h

T
R g

 


Angular momentum of the satellite, L = mvr =m G M
r

 15. Explain about  Global Positioning System (GPS). 
Ans: The Global Positioning System (GPS) is a satellite-
based radio navigation system developed and operated by the 
U.S. Department of Defence. GPS permits land, sea, and 
flying users to determine their position, velocity and the time 
24 hours a day. It works in all weather conditions, and  
anywhere in the world.  The GPS signals are available to an 
unlimited number of users simultaneously. The GPS satellites 
can be used free of charge by anyone.
    Each GPS satellite transmits signals to equipment on the 
ground. GPS receivers passively receive satellite signals, but  
they do not transmit. GPS receivers require an unobstructed 
view of the sky, so they are used only outdoors and they 
might perform less well within forest areas or near tall 
buildings. GPS operations depend on a very accurate time 
reference, which is provided by atomic clocks at the U.S. 
Naval Observatory. Each GPS satellite has atomic clocks on 
board.  
     The Global Positioning System (GPS) uses a network of 
satellites which let people with GPS receivers pinpoint their 
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location anywhere in the world.  TomTom is one of the first 
companies to make GPS technology available in an easy-to-
use form for everyone. 

16. Give the applications of GPS
1. GPS is an essential element of the global information 

infrastructure. The free, open, and dependable nature of 
GPS has led to the development of hundreds of 
applications affecting every aspect of modern life.  

2. GPS technology is now in everything from cell phones and 
wristwatches to bulldozers, shipping containers, and 
ATM's. 

3. GPS boosts productivity across a wide range of the 
economy, to include farming, construction, mining, 
surveying, package delivery, and logistical supply chain 
management.  

4. Major communications networks, banking systems, 
financial markets, and power grids depend heavily on GPS 
for precise time synchronization. Some wireless services 
cannot operate without it. 

5. GPS saves lives by preventing transportation accidents, 
using search and rescue efforts, and speeding the delivery 
of emergency services and disaster relief. 

6. By the use of GPS the air transportation system in the next 
generation will enhance flight safety while increasing 
airspace capacity. GPS also advances scientific aims such 
as weather forecasting, earthquake monitoring, and 
environmental protection. 

7. GPS is used for national security, and its applications have 
major role in military operations. Nearly all new military 
resources from vehicles to weapons come equipped with 
GPS. 
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 17. Explain the concept of weightlessness. 

Ans:Weightlessness is only a sensation, it is not a reality 
corresponding to an individual who has lost weight. 
Weightless sensations exist when all contact forces are 
removedAstronauts orbiting the earth, persons in  a freely 
falling elevator are weightless. They are weightless because 
there is no external contact force pushing or pulling on them. 
In these cases, gravity is the only force acting on their body. 
But it cannot be felt and would not provide any sensation of 
their weight. But for certain, the orbiting astronauts weigh 
something. There is a force of gravity acting upon their body. 
It is the force of gravity that supplies the centripetal force in 
circular motion. The force of gravity is the only force acting 
upon their body. The astronauts are in free-fall. Similar to the 
freely falling elevator, the astronauts and their surroundings 
are falling towards the Earth under the only influence of 
gravity. Their tangential velocity allows them to remain in 
orbital motion while the force of gravity pulls them inward. 

Many people believe that orbiting astronauts are 
weightless because they do not experience a force of gravity. 
If the absence of gravity is the cause of the weightlessness of 
orbiting astronauts, it would be in violation of circular motion 
principles. Hence there must be a force of gravity for there to 
be an orbit. 

The astronauts are weightless because the force of gravity 
is reduced in space. With less gravity, there would be less 
weight and thus they would feel less than their normal weight. 
The force of gravity acting upon an astronaut on the space 
station is certainly less than on Earth's surface. 
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SOLVED PROBLEMS 

 18. The periodic time of Venus is 224.7 days and that of 
earth is 365.26 days.  Find the radio of the major 
axes of orbits of Venus and earth. 

Sol: According to Kepler’s III law. 
2 2 3/ 2T a T a  

 Where T is the time period of revolving of planet and 2a 
the major axes of orbit of ellipse. 

3/ 2

venus venus

earth earth

T a
T a

 
   

 
2 /3224.7 0.7231

365.26
venus

earth

a
a

    
 

 19. A satellite travels round a planet at maximum and 
minimum distances 72×10 m and 72×10 m 
respectively.  If the speed of satellite at the farthest 
point be 32×10 m sec-1, calculate the speed of satellite 
at the nearest point. 

Sol: Angular momentum L = 1 1 2 2mv r mv r

2 1

1 2

v r
v r

 

3 7
31 1

2 7
2

2 10 2 10 4 10 / sec.
10

v rv m
r

  
    

 The speed of the satellite 
3 The speed of the satellite

4 10 / sec.
at the nearest point

m
 

 

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 20. If the mean distance of Mars from the sun is 1.524 

times that of earth, find the period of revolution of 
Mars about the sun. 

Sol: According to Kelper III law, 
2 2T a  3/ 2T a

Where T is the time period of revolution of planet and 2a the 
major axis of ellipse 

 
3/ 2

3/ 21.524 1.881mars mars

earth earth

T a
T a

 
   
 

As earth revolves round the sun in 1 year and 1 yearearthT 
1.1881mars earthT T  

1 1.881 1.881 years  

 21. The maximum and minimum distances of a comet 
from the sun are 1.6 ×  102 and 8 × 1010m 
respectively.  If the speed of the comet at the nearest 
point is 6 × 104 m/sec. calculate the speed at the 
farthest point. 

Sol: In the case of a comet, the angular momentum is 
conserved.  Hence 
 L = mvr = a constant 

1 1 2 2mv r mv r

1 1 2 2v r v r  . 
Substituting the given values, we get 

   12 4 10
1 1.6 10 6 10 8 10v      

   4 10
3

1 12

6 10 8 10
3 10 / sec

1.6 10
v m

  
   


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 22. If the earth be one-half of its present distance from 

the sun, what will be the number of days in a year ? 
Sol: According to Kepler’s III law, 

2 3T a
 Where T is the time period and 2a the major axis of the 
orbit of the ellipse. 

2 3
1 1
2 3

2 2

T a
T a

 

Here 1 365T   days;  1 2; 1/ 2a x a    and 2 ?T 

Hence 

3

2

2

365 81
2

x
T x

 
  

   
   

 
2

2
2

365
8

T 

2 129T   days 

 23. The semi-major axes of the orbits of Mercury and 
Mars are respectively 0.387 and 1.524 in 
astronomical units.  If the period of Mercury is 0.241 
year, what is the period of Mars ? 

Sol:  
3/ 2 3/ 2

mercury mercury

mars mars

0.387
1.524

T a
T a

       
  
3/ 2

mars mercury
1.524
0.387

T T    
 

   0.241 years 7.8 1.9 years  
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 24. The earth moves in an approximately circular orbit 

with radius 1.51011 in Mars circles around the sun 
in its orbit in 687 days.  What is the radius of Mars 
orbit around the sun. 

Sol:  According to Kepler’s law, 2 3T a  where T is the time 
period and 2a is the major axis of the orbital of the ellipse.  
Hence, 

2 3

M M

E E

T a
T a

   
   

   

Or  
2

33 M
M E

E

Ta a
T

 
  

 

  
2

33 11 6871.5 10
365Ma

    
 

Or  3
111.5 687 687

10
365 365Ma

  
  

  
11= 2.286×10 m

 25. Estimate the mass of the sun assuming the orbit of 
earth round the sun is a circle.  The distance between 
the sun and the earth is 1.49 ×  1011m and G = 6.67 
×  10-11 N-m2 kg-2 

Sol: We know that the gravitational force of attraction 
between the sun and the earth is 

2
G M mF
r


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The centripetal force on the earth = 
2mv
r


2

2
G M m mv
r r



Or  
22 2v r r rM

G T G
    

 
where T is the time period of earth round the sun. 


2

3
2

4M r
T T




 
   

2 11

2 11

4 1.49 10

365 24 60 60 6.67 10




 


   
30= 1.972×10 kg . 


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UNIT-III 

ESSAY QUESTIONS 

 1. Derive Galilean transformations. 
Ans: Consider a reference frame S with origin O, which is at 
rest. Let S1 be another frame with origin O1. Let S1 moves 
relative to S with 
uniform velocity ‘ v’ 
in the positive x-
direction. At the time 
t=0 assume that the 
origins O and O1 

coincides. 
      Consider an event 
happening at the 
point P at a particular 
time t. Let (x, y, z, t) 
and (x1, y1, z1, t1) be 
the coordinates of P with respect to the frames S and S1

respectively. In the time y the frame S1 moves a distance 
OO1= vt along the positive x direction. From the figure, OP=x 
and O1P=x1.            

y y

x p

O O1

z z1

x
x

x

vt

v

S1S
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1 1x x V t x x V t     

As there is no relative motion along y and z directions, y=y1

and z=z1. According to classical physics, time is supposed to 
be universal and independent of any reference frame. So t1=t.

1 1 1 1hence , , ,x x V t y y z z t t      and
1 1 1 1, , ,x x V t y y z z t t    

The above relations are called Galilean Transformations. 
Galilean Velocity Transformations:
    Consider the case 
where S1 is moving 
relative to S. Let V  be 
the velocity of S1

relative to S. Then 

x y zV v i v j v k    . 
Where xv , yv , zv  are 

the components of V
along X,Y,Z axes. Let 
(x, y, z, t) and (x1, y1, z1, t1) be the coordinates of an event 
with respect to the frames S and S1 respectively. These 
coordinates are taken when the frame S1 is separated from S 
by the distances , ,x y zv t v t v t . 

1 1 1, ,x y zx x v t y y v t z z v t     
Differentiating the above equations w.r.t.  t ,                

1

1

,x x xx

dx dx v u u v
dt dt

    

1

1

,y y yy

dy dy v u u v
dt dt

    

S
Y

x

Y S1

P

xv t

O

Z Z1

3v t

yt
x1

y1
x1

O1

x

x1
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1

1

z z zz

dz dz v u u v
dt dt

    

Where xu , yu , zu and 1xu , 1yu , 1zu  are the velocities in the 
systems S and S1 respectively. It can be written as,  

     1 1 1
1

x x y y z zx y zu u i u j u k u v i u v j u v k        

   1 1
x y z x y zu u i u j u k v i v j v k u u V         

The above equation represents the Galilean transformation of 
velocity. 

 2. Explain the concept of absolute frame of reference. 
Ans: A frame of reference is a set of coordinates with respect 
to whom any physical quantity can be determined. An 
absolute frame of reference is some fixed reference frame that 
every observer in the universe would agree that, it is at rest at 
all times. In relativity, no such reference frame exists. It was 
proved that light travels the same speed for every observer in 
the universe irrespective of their relative motion. Michelson- 
Morley conducted an experiment for searching theabsolute 
frame of reference. But they have a negative result in the 
experiment. Then   Einstein showed that no absolute frame 
exists. 

 3. Explain Michelson – Morley experiment. 
Ans: Search for ether frame  : With the acceptance of wave 
theory of light, it was supposed that the space is filled with a 
substance called as ether. The ether was supposed to be 
invisible, mass less, perfectly transparent, perfectly non-
resistive having high elasticity and low density. Lorentz 
maintained the stationary ether concept. It was further 
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supposed that the earth move through it without producing 
any disturbance. So, if the ether hypothesis is correct then it is 
possible to determine the absolute velocity of earth with 
respect to other frame. Michelson and Morley carried out an 
experiment using Michelson interferometer for this purpose.  

Experimental arrangement:Light from a monochromatic 
extended source S is made parallel by a collimating lens L.It 
falls on the semi silvered glass plate G inclined at an angle 

450 to the beam. It is divided into two parts. one is the 
reflected from the semi silvered surface giving rise to a ray1. 
It  travels towards mirror M1 and the other is the transmitted 
ray 2. It travels towards mirror M2. The two rays fall normally 
on mirrors M1 and M2 respectively and are reflected back 
along their original path. The reflected rays again meet at the 
semi silvered surface of glass plate G and enter the telescope 
where interference pattern is obtained. The optical distances 
of the mirrors M1 and M2 from G are made equal with the 
help of a compensating plate.  
    If the apparatus is at rest in ether, the two reflected rays 
would take equal time to return to the glass plate G. But 
actually the whole apparatus is moving along with the earth. 
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Let us suppose that the direction of motion of earth is in the 
direction of the initial beam. Due to the motion of the earth, 
the optical paths, traversed by both the rays are not the same. 
The reflection at the mirrors M1 and M2 do not take place at A 
and B but A1 and B1 respectively as shown in the figure. Thus 
the times taken by the two rays to travel to the mirrors and 
back to G will be different in this case. 

Theory:Let the mirrors M1 and M2 are at an equal distance 
l from the glass plate G. Further ‘c’ and ‘V’ be the velocities 
of light and apparatus or earth respectively. The total path of 
the ray from G to A1 and back will be GA1G1.  

From GA1D,      2 2 21 1 1GA AA A D   … (1)

 1GD AA
Let ‘t’ be the time taken by the ray to move from G to A1, 
then from the equation (1) we have  

       
 

2 2 2 2 2 2 2

2 2

lc t V t l t c V l t
c V

      


If t1 be the time taken by the ray to travel the whole path 
GA1G, then  

 
2

1 222 2

2

2 2 22 1
1

l l l Vt t
c cVc V c

c


 

          
 

1
2

1
2

2

2

2 1
2

l V
c c
 

  
 

 … (2) 

In case of the ray 2 which is moving towards mirror M2, the 
relative velocity is  (C-V) when it is moving from G to B. 
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from B to G it will be (C+V). If t2 be the total time taken by 
the ray 2for its travel, then  

 1
2

l lt GB G B l
c V c V

   
 



   
   2 22 2 2 2

2
2

2 2

1

l c V l c V lc lct
Vc V c V c
c

  
  

  
 

 
12 2

2 2

2 21 1l V l V
c cc c


   

      
   

 … (3) 

Thus the difference in times of travel of longitudinal and 
transverse path is  

2 2

2 1 2 2

2 2 11 1
2

l V l Vt t t
c cc c
   

         
   

22

2 3

2
2

l Vl V
c c c

 
 …  (4)

 Optical path difference between two rays is given by: 
Optical path difference = velocity t c t  

3 2

3 2
lV l Vc
c c

 
  

 
If   is the wavelength of light used, then    Path difference in 

terms of wavelength = 
2

2
lV
c 

Michelson and Morley performed the experiment in two steps 
i.e. the setting    shown in Fig. and secondly by turning the 
apparatus through 900. When the apparatus was turned 
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through 900, the positions of two mirrors are changed. Now 
the path difference is in opposite directions i.e. the path 

difference is
2

2
lV
c 

 
 
 

. The resultant path difference now 

becomes  
2 2 2

2 2 2
2lV lV lV

c c c  
 

   
 

. Weknow that a change in 

optical path difference by   corresponds to a shift of one 

fringe and hence the path difference 
22 lV


 
 
 

 corresponds to 

a fringe shift of 
22 lV


 
 
 

In  Michelson and Morley experiment:   l = 1.0   103 cm, 
= 5.0 x 10-5 cm, V = 3   106 cm/sec, and c = 3   1010

cm/sec. 

Change in fringe shift n=
2

2
2lV
c 

  
   

23 6

210 5

2 1 10 3 10
0.4

3 10 5.0 10
n fringe



 
  

 

       Thus a shift of less than half a fringe was only expected. 
Michelson and Morley could observe a shift of about 0.01 of 
fringe. This shift is within the limits of the error of 
observations. They repeated the experiment at different points 
on the earth’s surface and at different seasons of the year but 
they could not detect any measurable shift. So it was a null or 
negative result. 

Significance: this experiment proved that the ether 
concept is not true and the velocity of light is invariant. 
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 4. Give postulates of special theory of relativity.  Derive 

Lorentz transformations. 
Ans: 1. All physical laws are the same in all inertial frames 
of reference which are moving with constant velocity relative 
to each other. 
 2. The speed of light in vacuum is the same in every inertial 
frame. 

Lorentz transformations  of space and time:Consider two 
inertial systems S and S1 as shown in the figure. The system 
S1 is moving with a 
velocity v with respect to S 
in the positive X- direction. 
Let the axis of the two 
coordinate systems 
coincide at t=t1=0.  Let a 
pulse of light be generated 
at a time t = o at the origin 
which grows in the space. 
Now consider the situation            
               when the pulse reaches at point P. Let (x, y, z, t) and  
(x1, y1, z1, t1) be the coordinates of P measured by the 
observers O and O1 in frames S and S1 respectively. When the 
pulse is observed from S,  

Velocity of light = distance
time

2 2 2x y z
c

t
 

 

2 2 2c t x y z    2 2 2 2 2x y z c t   
2 2 2 2 2 0x y z c t      … (1) 

When the pulse is observed from S1 we have, 

       2 2 2 21 1 1 2 1 0x y z c t     … (2) 

O O1 X, X

Z Z1

S
S1Y

P
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  1 1constant ,c is a and y y z z   … (3) 
From equations (1) and (2), we have, 

       2 2 2 22 2 2 2 2 1 1 1 2 1x y z c t x y z c t      

   2 22 2 2 1 2 1.x c t x c t     … (4) 
Let the transformation between x and x1 can be represented 
by the relationship,  1x K x Vt   … (5) 
where k being independent of x and t. 
If we suppose that the system S is moving relative to S1 with 
a velocity (–V) along positive X direction then, 

 1 1x k x V t   … (6) 

 1 1x x V t
k

  

Substituting the value of x1 from eq. (5) in eq. (6), we get   

   1 1x xk x Vt V t k x V t V t
k k

       

1x k x kV t V t
k

   

1 1
2
1 1x k x k xt k t t k t

k V V V k
 

        
 

1
2
1 1xt k t

V k
  

     
  

 … (7)

Substituting the value of x1 from eq. (5) and t1 from eq. (7) in 
eq. (4), we get  

     2 22 2 2 1 2 14 x c t x c t   
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 
2

22 2 2 2 2 2
2
1 1xx c t k x V t c k t

V k
  

        
  

 2 2 2 2 2 2 2 2 22x c t k x V t xV t c k     

22
2

2 2 2

1 11 2 1x xt t
VV k k

    
       
    
 
 

Equating the coefficients of t2, 2 2 2 2 2c k V c k  
2

2 2 2
2 1Vc k c

c
 

    
 

2
2 2

2 2

1 1

1 1
k k

V V
c c

   
 
  

 

Substituting the 

value of K in eq. (5), we have the Lorentz transformation for 
space i.e.  

   1 1

2

2

5
1

x Vtx K x Vt x
V
c


    



 … (9) 

  1
2

17 1xt k t
V k

  
     

  
2

1 1
2 22 2

2 2

1 11 1
1 1

x x VVt t t t
V c cV V

c c

                   

So, the Lorentz transformations are,  
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1

2

21

x V tx
V
c






,  y=y1,  z=z1,  
2

1

2

21

x Vt
ct
V
c

  
 



 Lorentz inverse transformation:If we assume that the 
system S is moving with velocity (-V) relative to S1 along 
positive direction of X, then the Lorentz transformation 
equations can be expressed as 

1 1

2

21

x V tx
V
c






, y1=y,  z1=z, 

1
1

2

2

21

x Vt
c

t
V
c

 
 

 



These are known as inverse Lorentz transformation equations. 

 5. Explain the concept of length contraction. 
Ans:Consider two coordinate systems S and S1. Let S1 be 
moving with velocity v relative to S, along the positive X-
direction. Let a rod be placed in S1 along X-axis. Let x1, x2 be 
the X-coordinates at the ends of the rod w.r.t. S-frame.Then 
the length of the rod is given by,  
l = x2 – x1… (1) 

Let 1
1x , 1

2x  be the X-
coordinates of the 
ends of the rod w.r.t. 
S1-frame. Then its 
length l 1 in the 
system S1 is given by,        

Z Z1

x2
x1 X, X1

1
2x

1
1x

l 1S S1
Y Y1
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l 1 = 1

2x  – 1
1x  … (2) 

The situation is shown in fig.  According to Lorentz 
transformation equation, we get,  

1 2
2 2

21

x V tx
V
c





and

1 1
1 2

21

x V tx
V
c






Substituting these values in eq. (1), we have  
     2 1 2 11

2 2 2 2

2 2 2 21 1 1 1

x Vt x Vt x x ll
V V V V
c c c c

  
   

       
          

       
2

1
21 Vl l

c
 

   
 

Thus the length of the rod moving with velocity V relative to 

the observer is contracted by a factor 
2

21 V
c

 
 

 
  in the 

direction of motion. This is known as Lorentz-Fitzerald 
length contraction.  

 6. Explain the concept of time dilation. 
Ans: Dilation means to lengthen an interval of time. Consider 
two systems S and S1. Let S1 be moving with a velocity V 
with respect to S in the positive direction of X-axis. Suppose 
a clock is placed in the system S at position x and gives 
signals of intervals t .

i.e., 2 1t t t    … (1) 
If this time interval is observed by an observer in system S1

then interval  t1 recorded by him given by  1 1 1
2 1 2t t t   
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From Lorentz transformation, we have 
1 2

1
1 2

21

Vxt
ct
V
c

   
 



… (3)       

                      and 
2 2

1
2 2

21

Vxt
ct
V
c

   
 



 … (4) 

Substituting these values of 1
2t  and 1

1t  from equations (3) and 

(4) in equation (2), we get,
2 12 2

1

2 2

2 21 1

Vx Vxt t
c ct
V V
c c

       
     

 

2 1
2 2

2 21 1

t t t
V V
c c

 
 

 

2

2

1

1

tt
V
c


  



 … (5) 

This equation shows that  t1< t i.e. the time interval in 
system S is greater than the time interval in system S1. 

 7. Explain variation of mass with velocity. 
Ans:Consider two coordinate systems S and S1. Let S1 be 
moving with velocity v relative to S, along the positive  
X-direction, consider the collision of two bodies on the 
system S1 andview it from S. let the two bodies of masses 
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m1and m2 move with 
velocities u1 and (-u1)

parallel to X-axis in the 
system S1.letr the two 
bodies collide and merge in 
to one. As the two bodies 
were moving with the same 
velocity in opposite 
directions, they are at rest 
after collision in S1. Let u1
and u2 be the initial velocities relative to the system S and v 
be their common velocity after collision. Then according to 
the addition of velocities,  

1

1 1

21

u vu
u v
c






and 
1

2 1

21

u vu
u v
c

 




 … (1) 

Applying the law of conservation of momentum,                       
 1 1 2 2 1 2m u m u m m v    … (2) 

Substituting the values of u1 and u2 in the equation (2), 

 
11

1 2 1 21 1

2 21 1

u vu vm m m m v
u v u v
c c

 
  

 

11

1 21 1

2 21 1

u vu vm v m v
u v u v
c c

   
    

      
          

1 2 1 2
1 1

2 2

1 21 1

2 21 1

u v u vu v v v u v
c cm m

u v u v
c c

   
        

    
          
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2 2

1 1
2 2

1 21 1

2 2

1 1

1 1

v vu u
c c

m m
u v u v
c c

      
       

          
    

      
1

2
1

1
2

2

1

1

u v
m c
m u v

c

 
 

   
   

 …(3) 

We have  
 211

2
1 11 21

2 2

1
1 1

u vu vu u
u v u v
c c


   

   
 

 212
1
2 2 21

2

1

1

u vu
c c u v

c


 

 
 

 

 212
1
2 2 21

2

11 1

1

u vu
c c u v

c


   

 
 

 

 
2 21 1

21 22

2 41

2

1 1

1

u v u v
u vcc
cu v

c

   
         

 
 

 
 211 2 1

2 2 2 2
2 2uu v v u v
c c c c

   
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     21 22 21 2 1 2
2 2

4 2 2

2 21 1

2 2

1 1
1

1 1

u vu v u v c c
c c c

u v u v
c c

            
   
    

   

 1 2 2

2 22
1

22 1

2

1 1

1
1

u v
c cu

c u v
c

  
        

 
 

 

 1 2 2

2 21

22
1
2

1 1

1
1

u v
c cu v

c u
c

              
   
 

1
2

Similarly  

 1 2 2

2 21

22
2
2

1 1

1
1

u v
c cu v

c u
c

              
   
 

1
2

Substituting these values in the equation (3), 

 

1

2
1

1
2

2

1
3

1

u v
m c

u vm
c

 
 

   
 
  
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 

 

1

1

2 22
1

2 2 2

1

2 2 22
2

2 2 2

1 1 1

1 1 1

u v u
c c cm

m
u v u
c c c

              
             

1
2

1
2

2
2
2

1

22
1
2

1

1

u
cm

m
u
c

 
  

  
 
  

 

1
2

1
2

If the mass m2 is at rest in the system S before collision, then 
u2= 0 

1
2

2 1
2

1

1

m
m u

c

 



If m1=m and m2= m0, then 

0

2
1
21

mm
u
c

 



This gives the relativistic variation of mass with velocity. 

 8. Explain Einstein’s mass energy relation 
Ans: According to classical mechanics, the energy is defined 
in terms of work (Force x distance) and the force is the rate of 
change of momentum, hence  

 dF mV
dt

  … (1)

According to theory of relativity, the mass as well as velocity 
are variable, thus,  

dV dmF m V
dt dt

   … (2) 

When a particle is displaced through a distance dx by the 
application of a force F, then the increase in kinetic energy, 
dK is given by, dK Fdx  … (3) 
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Substituting the value of F from eq. (2) in eq. (3), we get  

dV dmdK m dx V dx
dt dt

 

2dK mVdV V dm    … (4) 
dx V
dt

   
 

  The variation of mass with velocity is given by,   
0

2

21

mm
V
c





Squaring both sides, we have 
2 2

2 0
2 2

m cm
c V




22 2 2 2 2
0m c m V m c  

Differentiating this eq., 2 22 2c m dm V m 2 2 0dm m V dV 
2 2 0c dm V dm mV dV   
2 2c dm V dm mVdV    … (5) 

Comparing equations (4) and (5), we have  
dK=c2 dm ... (6) 

  Now consider that the body is at rest initially and by the 
application of force it acquires a velocity V. The mass of the 
body increases from m0 to m. The total kinetic energy 
acquired the body is given by, 

 
0

2 2
0

m

m

dK c dm K c m m      … (7)

  This is the increases in kinetic energy due to increase in 
mass. We know that total energy of a moving particle is the 
sum of its kinetic energy of motion and the energy at rest. 
Hence 
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 2 2 2
0 0 0Total energy E K m c E c m m m c     

2E mc   … (8) 

 9. Explain the concept relativistic of addition of 
velocities. 

Ans: Consider two systems S and S1. Let S1 be moving with 
a velocity V with respect to S in the positive direction of  
X-axis. Let a body moves a distance dx in the time dt in the 
system S and moves a distance dx1 in time dt1 in the system 

s1. Then d xu
d t

 and 
1

1 d xu
d t



According to Lorentz transformation,  1 1 ,x k x Vt 
1

1
2

x Vt k t
c

 
  

 
Differing the above equations, we have,  

 1 1d x k d x V d t  and 
1

1
2

d x Vd t k d t
c

 
  

 

 
1

1 1 1

1 1
1

2 1 2

Dividing the two equations
1

d x Vk d x V d td x d t
d t d x V d x Vk d t

c d t c


 

   
    

   
1

1

21

u Vu
u V
c


 



The above equation represents the relativistic addition of 
velocities. 
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SHORT ANSWER QUESTIONS 

 10. Give Galilean transformations. 

Ans: 1 1 1 1hence , , ,x x V t y y z z t t      and
1 1 1 1, , ,x x V t y y z z t t    

The above relations are called Galilean Transformations. 
Galilean Velocity Transformations:

   1 1
x y z x y zu u i u j u k v i v j v k u u V        

The above equation represents the Galilean transformation of 
velocity. 

 11. Explain the concept of absolute frame of reference. 
Ans: A frame of reference is a set of coordinates with respect 
to whom any physical quantity can be determined. An 
absolute frame of reference is some fixed reference frame that 
every observer in the universe would agree that, it is at rest at 
all times. In relativity, no such reference frame exists. It was 
proved that light travels the same speed for every observer in 
the universe irrespective of their relative motion. Michelson- 
Morley conducted an experiment for searching theabsolute 
frame of reference. But they have a negative result in the 
experiment. Then   Einstein showed that no absolute frame 
exists. 
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 12. Give postulates of special theory of relativity.  

Mansion  Lorentz transformations. 
Ans: 1. All physical laws are the same in all inertial frames 
of reference which are moving with constant velocity relative 
to each other. 
 2. The speed of light in vacuum is the same in every inertial 
frame. 

Lorentz transformations  of space and time:

1

2

21

x V tx
V
c






,  y=y1,  z=z1,  
2

1

2

21

x Vt
ct
V
c

  
 



 Lorentz inverse transformation:

1 1

2

21

x V tx
V
c






, y1=y,  z1=z, 

1
1

2

2

21

x Vt
c

t
V
c

 
 

 



 13. Explain the concept of length contraction. 
Ans:Consider two coordinate systems S and S1. Let S1 be 
moving with velocity v relative to S, along the positive X-
direction. Let a rod be 
placed in S1 along X-
axis. Let x1, x2 be the 
X-coordinates at the 
ends of the rod w.r.t. 
S-frame.Then the 
length of the rod is 
given by,  Z Z1

x2
x1 X, X1

1
2x

1
1x

l 1S S1
Y Y1
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l = x2 – x1                   … (1) 
Let 1

1x , 1
2x  be the X-coordinates of the ends of the rod w.r.t. 

S1-frame. Then its length l 1 in the system S1 is given by,        
l 1 = 1

2x  – 1
1x  … (2) 

The situation is shown in fig.  According to Lorentz 
transformation equation, we get,  

1 2
2 2

21

x V tx
V
c





and

1 1
1 2

21

x V tx
V
c






Substituting these values in eq. (1), we have  
     2 1 2 11

2 2 2 2

2 2 2 21 1 1 1

x Vt x Vt x x ll
V V V V
c c c c

  
   

       
          

       
2

1
21 Vl l

c
 

   
 

Thus the length of the rod moving with velocity V relative to 

the observer is contracted by a factor 
2

21 V
c

 
 

 
  in the 

direction of motion. This is known as Lorentz-Fitzerald 
length contraction.  

 14. Explain the concept of time dilation. 
Ans: Dilation means to lengthen an interval of time. Consider 
two systems S and S1. Let S1 be moving with a velocity V 
with respect to S in the positive direction of X-axis. Suppose 
a clock is placed in the system S at position x and gives 
signals of intervals t .
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i.e., 2 1t t t    … (1) 

If this time interval is observed by an observer in system S1

then interval  t1 recorded by him given by  1 1 1
2 1 2t t t   

From Lorentz transformation, we have 
1 2

1
1 2

21

Vxt
ct
V
c

   
 



… (3)       

                      and 
2 2

1
2 2

21

Vxt
ct
V
c

   
 



 … (4) 

Substituting these values of 1
2t  and 1

1t  from equations (3) and 

(4) in equation (2), we get,
2 12 2

1

2 2

2 21 1

Vx Vxt t
c ct
V V
c c

       
     

 

2 1
2 2

2 21 1

t t t
V V
c c

 
 

 

2

2

1

1

tt
V
c


  



 … (5) 

This equation shows that  t1< t i.e. the time interval in 
system S is greater than the time interval in system S1. 
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 15. Explain the concept relativistic of addition of 

velocities. 
Ans: Consider two systems S and S1. Let S1 be moving with 
a velocity V with respect to S in the positive direction of  
X-axis. Let a body moves a distance dx in the time dt in the 
system S and moves a distance dx1 in time dt1 in the system 

s1. Then d xu
d t

 and 
1

1 d xu
d t



According to Lorentz transformation,  1 1 ,x k x Vt 

1
1

2
x Vt k t
c

 
  

 
Differing the above equations, we have,  

 1 1d x k d x V d t  and 
1

1
2

d x Vd t k d t
c

 
  

 

 
1

1 1 1

1 1
1

2 1 2

Dividing the two equations
1

d x Vk d x V d td x d t
d t d x V d x Vk d t

c d t c


 

   
    

   
1

1

21

u Vu
u V
c


 



  The above equation represents the relativistic addition 
of velocities. 
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SOLVED PROBLEMS 

 16. A particle of mass m0 is moving with a velocity 0.9c.  
Calculate its relativistic mass and its kinetic energy. 

So l: We have relativistic mass 
 

0 0
2 2

2 2

0.91 1

m m
m

V c
c c

 

 

 0
02.294

1 0.81
m m 


2 2 2 2 2
0 0 0 02.29 1.294K E mc m c m c m c m c    

 17. If the total energy of a particle is exactly thrice its 
rest energy, what is the velocity of the   particle? 

So l: Given 2 2
0 02 2E mc m c m m   

We have relativistic mass 0 0
02 2

2 2

2
1 1

m mm m
V V
c c

  

 

2

22

2

1 12 1
4

1

V
cV

c

    



2
2 2

2

31 3 31 0.866
4 4 4 2

cV V c V c
c

          
 
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 18. What will be the fringe shift in Michelson-Morley 

experiment if the effective length of each path is 6 m 
and light wavelength of 6000A0 is used? Earth’s 
velocity is 3 ×  104 ms-1 and c = 3 ×  108 ms-1

So l: fringe shift n = 
2

2

2lV
c 

  
   

24

28 10

2 6 3 10
0.2

3 10 6000 10
n fringe




  

 

 19. At what speed the mass of an object will be double of 
its value at rest? 

So l: We have relativistic mass 0
02

2

, 2
1

mm given m m
V
c

 



2
0

0 22

2

12 1
2

1

m Vm
cV

c

    



2 2
8 1

2 2

1 3 31 2.596 10
4 4 2

V V V c ms
c c

 
          

 

 20. A clock showing correct time when at rest, loses 1 
hour in a day when it is moving. What is its speed? 

So l: We have, 1

2 2

2 2

2324
1 1

tt
V V
c c


   

 
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2

2

231 0.9583
24

V
c

   

2 2

2 21 0.9183 1 0.9183 0.0817V V
c c

      

   0.0817 0.286V c c  

 21. Find the mass of an electron moving with a velocity 
of 1 ×  1010 cm/sec. The rest mass of the electron is 
9.1 ×  10-31 kg. 

So l: We have relativistic mass 
 
 

31
0

2 28

2
28

9.1 10

1 101 1
3 10

mm
V
c








 

 


 319.652 10 kg 

 22. A rod of 1 m length is moving with a velocity of 0.6 x 
108 m/s with respect to a stationary observer. Find the 
length of the rod (in m) along its direction of motion 
as seen by the observer. 

So l: we have 
 
 

282
1

2 28

0.6 10
1 1 1

3 10

Vl l
c

 
     

  

16

16

0.36 10 4 961 1 0.9798
100 1009 10

m
    


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 23. Calculate the expected fringe shifts in the Michelson-

Morley experiment, if the distance of each plate is 2 
m and the wavelength of monochromatic radiation is 
(a) 6000A0 and (b) 4000A0

So l: fringe shift 
2

2
2n lV
c 

 

  
   

24

28 10

2 2 3 10
0.067

3 10 6000 10
n fringe




  

 

fringe shift 
   

   

242

2 28 10

2 2 3 102n 0.1
3 10 4000 10

lV n fringe
c  


   

 

 24. If a rod travels with a speed v=0.6 c along its length, 
calculate the percentage of contraction. 

So l: We have 
2

1
21 Vl l
c

 
  

 

   
2

1 1 1 1
2

0.6
1 1 0.36 0.64 0.8

c
l l l l l

c
      

amount of contraction  1 1 1 10.8 0.2l l l l l    

11

1 1

0.2% , 100 100 20%ll lcontraction
l l


   
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 25. Calculate the velocity of the rod when its length will 

appear 90% of its proper length. 

So l: We have 
2 2

1
2 21 90 100 1V Vl l
c c

   
       

   

2

2
90 1

100
V
c

 
   

 
22 2

2 2
9 81 81 191 1

10 100 100 100
V V
c c

        
 

2 2 8 119 1.307 10
100

V c V ms      
 

 26. A rocket ship is 100 m  long on the ground. When it 
is in flight, its length is 99 m to an observer on the 
ground. What is its speed? 

So l: We have 
2 2

1
2 21 99 100 1V Vl l
c c

   
       

   
22 2

2 2
99 991 1

100 100
V V
c c

           
  

2 2

2 2

9801 1991
10000 10000

V V
c c

        
 

 8 1199 0.423 10
100

V c ms
 

     
 
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 27. The proper life of meson is 2x10-8sec. calculate the 

mean life of meson when it moves with a velocity 
0.8c? 

So l:We have
 

8
1 1

2 2

2 2

2 10

0.81 1

tt t
V c
c c

 
    

 

8 8 8
82 10 2 10 2 10 3.33 10 sec

0.61 0.64 0.36

  
  

    


 28. The proper life of meson is 2× 10-8sec, when it moves 
with a velocity of 2.4× 1010cm s-1 . Calculate distance 
travelled by it before disintegrating and distance it 
would travel if there were no relative effect. 

So l:We have 1

2

21

tt
V
c


  



 
 

8
1 8

210

10 2

2 10 4.17 10 sec
2.4 10

1
3 10

t



   






Distance travelled=velocity   time=  102.4 10 

 84.17 10 1000cm 

Distance travelled if there were no relative effect =

   10 82.4 10 2.5 10 cm  
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 29. What is the velocity of   mesons whose observed life 

is 2.5 x10-7sec. The proper life of meson is 2.5×
10-8sec. 

So l:We have, 1

2

21

tt
V
c


 



8
7

2 2

2 2

2.5 10 12.5 10 10
1 1V V
c c


 

    

 

2 2

2 2

1 991
100 100

V V
c c

    

2 2 899 99 0.995 2.9849 10 sec
100 10

V c V c c      

 30. A clock shows correct time. With what speed it should 
be moved relative to an observer so that it may appear 
to lose 4 minutes in 24 hours. 

So l:We have 1

2

21

tt
V
c


 



 here 24 60 1440 mint   

1 1440 4 1444mint   
2 2

2 22

2

1440 14401444 1 1 0.9972
1444

1

V V
c cV

c

       



2 2

2 21 0.9944 0.0056V V
c c

    

 7 10.7483 2.23 10 secV c m    
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 31. Two particles came towards each other with a speed 

of 0.8 with respect to laboratory. Find their relative 
speed. 

So l:We have 
1

1

22

0.8 0.8
0.8 0.811

u V c cu
c cu V
cc

 
 




 
1.6 1.6 0.975

1 0.8 0.8 1.64
c c c  

 

Thus the relative speed is 0.975c. 


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UNIT-IV 

ESSAY QUESTIONS 

 1. Define Simple Harmonic Motion. Give its 
Characteristics. 

Ans: Simple Harmonic Motion: This is a special type of 
periodic motion in which the body moves along a straight line 
such that its acceleration is always directed towards a fixed 
point, and is directly proportional to its displacement but 
opposite in direction.
Characteristics of simple harmonic motion: 

a) The motion is periodic. 
b) The motion is along a straight line about the mean 

position. 
c) The acceleration is proportional to displacement and 

in opposite direction. 
d) Acceleration is always directed towards the mean 

position. 
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 2. Derive the Equation of motion of a simple harmonic 

oscillator and its solution. 
Ans: Consider a particle ‘P’ of mass m executing S.H.M. 
about equilibrium position ‘O’ along X-axis. Let x be the 
displacement of P from O at any instant. The instantaneous 
force F acting upon P is given by, 

F x F k x     … (1) 
Where k is proportionality constant. The negative sign is used 
to show that the force F is opposite to the displacement. 
According to Newton’s second law of motion,  

 F=ma 
2

2
d xF m
d t

 
   

 
 … (2) 

From eqs. (1) and (2): 
2 2

2 2
d x d x km kx x
dt dt m

  

2
2

2 0d x x
dt

     Where 2k
m



This is the differential equation of simple harmonic oscillator. 
Solution for the equation:The simple harmonic oscillator 

equation is   
2

2
2 0d x x

dt
   … (1) 

Let us assume a trial solution of the form,  tx c e Where C 
and  are arbitrary constants. 

Differentiating the eqn, (1) we get tdx c e
dt



2
2

2
td x c e

d t
 

Substituting these values in the equation (1):      
2 2 0t tc e ce    
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2 2 2 2( ) 0 ( ) 0tc e         

( 0)tc e 
2( ) Where 1i i       

So the general solution of the equation (1) is     
1 2

i t i tx c e c e   
Where  C1 and C2 are arbitrary constants. 

1 2Further, (cos sin ) (cos sin )x C t i t C t i t      

1 2 1 2( ) cos ( ) sinx C C t i C C t    
Let us put, 1 2( ) sinC C a    and  1 2( )i C C a cos 
Where a and   are new constants.   

sin cos cos sinx a t a t     

 sinx a t   
This is the solution of the equation of simple harmonic 
oscillator. 

 3. Define damping. Derive theequation of damped 
harmonic oscillator and explain over damped, 
critically damped, under damped motions. 

Ans: Damping:For an ideal harmonic oscillator, the 
amplitude of vibration remains constant. When a body 
vibrates in a medium which offers resistance to its motion, the 
amplitude of vibration decreases gradually and finally the 
body comes to rest. This is due to the resistance offered by the 
medium. Then the motion of the body is known as damped 
harmonic motion. This phenomenon is called damping  

Example:If we displace a pendulum from its equilibrium 
position it will oscillate with decreasing amplitude and finally 
comes to rest in equilibrium position. 
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Equation of damped harmonic oscillator:Consider a 

damped harmonic oscillator of mass ‘m’. When it is in 
motion, the forces acting on it are, 
1. Restoring force: The restoring force is proportional to 

displacement but oppositely directed. 
1 1F x F kx     ,Where k is a constant of 

proportionality or force constant. 
2. Resistive force:  The resistive force is proportional to 

velocity but oppositely directed. 

2 2
dx dxF F r
dt dt

    , Where r is the frictional force per 

unit velocity. 

      Resultant force F = mass x acceleration = 
2

2

d xm
d t

2

1 2 2 0d x r dx kF F F x
m dt mdt

     

2
2

2 2 0d x dxb x
dtdt

     … (1) 

where 22 ,r kb
m m

 

This is the differential equation of damped harmonic 
oscillator. 
Solution for the equation:Eq. (1) is a differential equation of 
second order. 
Let its solution be tx Ae  … (2)  
where A and     are arbitrary constants. 
Differentiating equation (2) with respect to t, we get  

2
2

2
t tdx d xA e and A e

dt dt
   
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Substituting these values in eq. (1), we have, 

  2 21 2 0t t tA e bA e Ae       

 2 22 0tAe b      

   2 22 0 0tb Ae      
2 2b b     

The general solution of eq. (1) is given by   
   2 2 2 2

1 2

b b t b b t
x A e A e

      
   … (3) 

Where A1 and A2 are arbitrary constants. 
Case (1): Over damped motion:When 2 2b 

In this case  2 2b   is real and less than b. Now the 

powers  2 2b b    and  2 2b b     in eq. (3) are 

both negative. Thus the displacement x consists of two terms, 
both exponentially decreases to zero. In this case the body 
once displaced returns to its equilibrium position very slowly 
without performing any oscillation. This type of motion is 
called as over-damped or dead beat.  
Ex: This type of motion is shown by a pendulum moving in 
thick oil or by a dead beat moving coil galvanometer 
Case (2): Critical Damping:  when 2 2b 

If we put 2 2b   in equation (3), then this solution does 
not satisfy the differential equation (1). Let us consider that 

2 2b   is not zero but this is equal to a very small quantity 
‘h’. 
i.e., 2 2 0b h   . Now eq. (3) reduces to  

     1 2 1 2
b h t b h t bt h t h tx A e A e e A e A e       
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    1 21 ... 1 ...bte A ht A ht     

   1 2 1 2 ....bte A A ht A A       
    (  his very small higher powers are neglected) 

 bte p qt   … (4) 

 Where  1 2p A A   and  1 2q h A A 
Eq. (4) represents a possible form of a solution. It is clear 
from eq. (4) that as t increases, the factor (p+qt) increases but 
the factor bte decreases. In this way the displacement term 

bte and the displacement approaches zero as t increases. In 
this case the particle tends to acquire its position of 
equilibrium much rapidly than in case (1). Such a motion is 
called critical damped motion. 

Ex:Motion of pointer in the instruments such as voltmeter, 
ammeter etc., In this the pointer moves to correct position and 
comes to rest without any oscillation in minimum time. 

Case (3): Under damped motion:  when 2 2b  , In this 

case 
2 2b   is imaginary. 

Let us write 
2 2 2 2b i b i     

where     2 2 1b and i    

       1 2 1 23 b i t b i t bt i t i tx A e A e e A e A e            

    1 2cos sin cos sinbte A t i t A t i t      

   1 2 1 2cos sinbte A A t i A A t       

 sin cos cos sinbte a t a t    

   where    1 2 1 2sin , cosa A A a A A    
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  2 2sin sin ( )bt btx e a t ae b t          
 

 …(5) 

This equation represents the simple harmonic motion with 
amplitude 

b tae and time period. 

2 2

2 2
( )

T
b

 
 

 


The amplitude of the motion is 

continuously decreasing owing to the factor bte which is 
called damping factor. The amplitude varies between btae

and btae . The decay of the amplitude depends upon the 
damping coefficient ‘b’. It is called “under damped” motion. 

Ex:The motion of a pendulum in air, the motion of the coil 
of ballistic galvanometer or the electric oscillations of LCR 
circuit. 

 4. Explain theMethods for the estimation of damping. 
Ans: There are 3 methods for the estimation of damping. 
They are: 

Logarithmic decrement: Logarithmic decrement measures 
the rate at which the amplitude decreases. The amplitude of 
damped harmonic oscillator is given by,  amplitude = btae . 
At t=0, amplitude 0a a
Let 1 2 3, , ....a a a be the amplitudes at time t = T, 2T, 3T 
…respectively, where T= period of oscillation. Then,  

1
bTa ae ,

(2 )
2

b Ta ae , (3 )
3

b Ta ae ...   

From these equations we get, 0 1 2

1 2 3

...... bTa a a e
a a a

   
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( )e where bT  

Taking the natural logarithm, we get, 
0

1

log loge e
ae
a

  1 2

2 3

log log .......e e
a a
a a

 

0 1 2

1 2 3

log log log .....e e e
a a a
a a a

   

Where is known as logarithmic decrement.
Thus logarithmic decrement is defined as the natural 

logarithm of the ratio between two successive maximum 
amplitudes which are separated by one period. 
Relaxation time:The relaxation time is defined as the time 
taken for the total mechanical energy to decay to (1/e)th of its 
original value.  

The mechanical energy of damped harmonic oscillator is 

giveby. 2 2 2 2 21 1
2 2

btE m A m a e     btA a e

Let 0 0,E E when t 

2 2 2
0 0

1
2

btE m a Now E E e     … (1) 

Let   be the relaxation time, i.e. at t= , 0EE
e



2 1 20
0

12 1
2

b bE E e e e b
e b

         τ τ  … (2) 

From eqs. (1) and (2) we get 0

t

E E e 


  … (3) 
The expression of power dissipation can be written as  

EP


  … (4) 
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Quality factor:The quality factor is defined as 2π times the 
ratio of the energy stored in the system  and the energy lost 
per period. 

2 2energy stored in system EQ
energy lost per period PT

    … (5)

Where P is the power dissipatedand T is periodic time. We 

know that EP




Where is the relaxation time . So,  
22 EQ Q

E TT

 



   
 
 
 

 … (6) 

where 2
T
  = angular frequency. 

 5. Define natural and forced vibrations. Derive 
theequation of damped harmonic oscillator and 
arrive the condition for resonance. 

Sol: Natural or free vibrations: When a body is made to 
vibrate and left free itself it always vibrates with a frequency 
known as natural frequency. Those vibrations are called 
natural or free vibrations.  

Forced vibrations:When the body vibrates with a 
frequency other than its natural frequency under the action of 
an external periodic force, then those vibrations are called 
Forced vibrations 
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Equation of forced oscillator: Consider a forced oscillator of 
mass ‘m’. When it undergoes forced oscillations the forces 
acting on it are,
1) Restoring force (F1):The restoring force proportional to 

the displacement but oppositely directed, F1= -ky, where k 
is known as force constant. 

2) Resistive force (F2):The resistive force is proportional to 
velocity but oppositely directed. 

2 2
d x d xF F r
d t d t


 

    
 

Where r is the resistive force 

per unit velocity. 
3) External periodic force (F3) :  It is represented by 

3 sinF F pt . Where F is the maximum value of this force 

and
2
p


is its frequency. So the total force acting on the 

particle is given by, 1 2 3F F F F  

sindxF kx r F pt
dt

   

By Newton’s second law of motion 
2

2
d xF m
dt



2

2 sind x dxm kx r F p
dt dt

    

2

2 sind x dxm r kx F pt
dt dt

   

2

2 sind x r dx k Fx pt
dt m dt m m

   
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2

2
2 2 sind x dxb x f pt

dt dt
     … (1) 

Where 22 ,r k Fb and f
m m m

  

Eq. (1) is the differential equation of forced oscillator. The 
solution of differential equation (1) must be of the type   

 sinx A pt     A and   are arbitrary constants.   

Differentiating eq. (2) we have  cosd x A pt
d t

   and  

 
2

2
2 sind x A p pt

d t
  

Substituting these values in eq. (1) we get: 
     2 2sin 2 cos sinA p pt bAp pt A pt        

  sin sinf pt f pt     

   2 2( ) sin 2 cosA p pt bAp pt     

 sin cos cos( )sinf pt f pt      

Comparing the coefficients of  cos pt  and  sin pt  on 
both sides,  

2 2( ) cosA p f    … (3) 
and 2 sinbAp f   … (4) 

Squaring equations (3) and (4) and then adding, we get 
2 2 2 2 2 2 2 2( ) 4A p b A p f   
2 2 2 2 2 2 2[( ) 4 ]A p b p f   

2 2 2 2 2[( ) 4 ]
fA

p b p
 

 
 … (5) 
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2 2 2 2
(4) 2 2: tan
(3) ( ) ( )

bAp bp
A p p


 

 
 

1
2 2
2bpTan

p



  

    
 … (6) 

Substituting the value of A from Eq. (5) in Eq. (2), we get 

 
2 2 2 2 2

sin
[( ) 4 ]

fx pt
p b p




 
 

 … (7) 

Eq. (5) gives the amplitude of forced vibration while (6) gives 
its phase. 
Resonance:  when a body vibrates under the action of an 
external periodic force, whose frequency is equal to the 
natural frequency of the vibrating body, the amplitude 
becomes maximum. This phenomenon is called resonance 
and those vibrations are called resonant vibrations. 
Condition for amplitude resonance:The amplitude of forced 
oscillations varies with the frequency of applied force and 
becomes maximum at a particular frequency. This 
phenomenon is known as amplitude resonance
In this case of forced vibrations, we have 

 
2 2 2 2 2

sin
[( ) 4 ]

fA pt
p b p




 
 

 … (1) 

and 1
2 2
2bpTan

p



  

   
. 

 The expression (1) shows that the amplitude varies with 
the frequency of the force p. For a particular value of p, the 
amplitude becomes maximum. The phenomenon is called 
Amplitude Resonance. The amplitude is maximum when 

2 2 2 2 2[( ) 4 ]p b p    is minimum. 
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2 2 2 2 2[( ) 4 ] 0d p b p

dp
   

2 2 22( )( 2 ) 4 (2 ) 0p p b p    
2 2 2( ) 2p b  

2 2( 2 )p b    … (3) 
If the damping is small, the value of ‘b’ can be neglected 

and the condition of maximum amplitude reduced to p  . 

 6. Explain the Sharpness of resonance. 
So l: We have seen that 
amplitude of the forced 
oscillation is maximum when 
the frequency of the applied 
force has a value to satisfy 
the condition of resonance 
i.e. 2 2( 2 )p b  . If the 
frequency changes from this 
value, the amplitude falls. 
When the fall in amplitude is 
very large, for a small change 
in the resonance condition the resonance is said to be sharp. If 
the fall in amplitude is small, the resonance is termed as flat. 
Thus the term sharpness of resonance means the rate of fall in 
amplitude with the change of forcing frequency on each side 
of resonance frequency. 

The graph shows the variation of amplitude with forcing 
frequency at different amounts of damping. It is observed 
from the figure that, the resonance is sharp for smaller 
damping ( curve-2) and the resonance is flat when damping is 
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large(curve-3). Hence, smaller is damping, sharper is 
resonance or larger is the damping, flatter is the resonance. 
When there is no damping (curve-1) the amplitude becomes 
infinity. 

 7. What are coupled oscillators? What are normal 
coordinates and normal modes. 

Ans: Coupled oscillators :When the oscillations ofthe 
oscillators are coupled with one another, they are called 
coupled oscillators. In this the motion of one oscillator is 
effected by the other. 
Ex:  Two coupled oscillating systems are shown in Fig. The 
fig (a) shows two simple pendulums with their bobs 
connected to each other by a spring. Fig (b) shows two 
masses attached to each other by three springs.  The middle 
spring provides the coupling.  Fig (c) shows the coupled LC 
circuits. 

m
k

m
(a)

k

m

(b)
kk

m

C L

(c)

CL

Normal coordinates and Normal modes: The normal 
coordinate of a coupled system are the parameters in terms of 
which the equations of motion of the system can be expressed 
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as a set of linear differential equations with constant 
coefficients in which each equation contains only one 
dependent variable. 
     The S.H.M. associated with each normal coordinate is 
called a normal mode of the coupled system. 

A two coupled oscillator has two normal modes, as in 
phase mode and an out of phase mode.  The in phase mode 
has a frequency equal to the natural frequency of either of the 
oscillators.  The out of phase mode has a frequency slightly 
greater than the natural frequency of the oscillators. 
Significance: the normal modes of vibration are entirely 
independent of each other. The energy associated with the 
normal mode is never exchanged with another mode. So we 
can add the energies of the separate modes to get total energy.  
       The general motion of any coupled system can always be 
represented as a superposition of all possible normal modes.  

 8. Explain the theory of two coupled oscillators its 
normal coordinates and normal modes. 

Ans: Two coupled Pendulums: Consider a system of two 
identical simple pendulums A and B each of mass m and 
length l, coupled by a linear spacing of force constant k.  The 
separation between the bobs is such that the spring is relaxed 
in the equilibrium position (Fig .a) 

m
k

m
(a)

L L

Xa

A

(b)

B
Xb
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 The system is disturbed slightly from its equilibrium 
position as in above fig.(b) and released.  The two pendulums 
begin to oscillate.  Let xa and xb be the displacements of bobs 
A and B at an instant of time t respectively.  
Whenxb>xa the spring is stretched and compressed.   
When xa>xb, the magnitude of the tension in the spring is 
 b ak x x . This tension will act along the direction of the 

restoring force mg sin bxmg
l

   of the pendulum B but in 

the opposite direction of restoring force mg ax
l

 of the 

pendulum A. The equations of the motion of pendulums A 
and B for small oscillations in a planeare given by, 

 
2

2
a

a b a
d x mgm x k x x
dt l

     … (1) 

 And  
2

2
b

b b a
d x mgm x k x x
dt l

     … (2) 

These equations are not of S.H.M. as the acceleration of the 
pendulum is not proportional to its own displacement.  In the 
absence of spring i.e., k = 0, the two pendulums will execute 
simple harmonic oscillations, whose angular frequency 0 is 

given by, 0
g
l

 

 In terms of 0 , the two coupled Eq. (1) and (2) can be 
written as, 

 
2

2
02

a
a b a

d x kx x x
dt m

     … (4) 
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 and  
2

2
02

b
b b a

d x kx x x
dt m

     … (5) 

 solving the equations for ax  and bx : 

       
2

2
024 5 : a b a b

d x x x x
dt

    

   
2

2
02 0a b a b

d x x x x
dt

      … (6) 

 Subtracting Eq. (1) from Eq. (2),  

       
2

2
02(5  – 4  :) 2b a b a b a

d kx x x x x x
dt m

     

   
2

2
02 2 0b a b a

d kx x x x
dt m

       
 

 … (7) 

 Eq. (6) and (7) and familiar equations of S.H.M. In Eq. (6) 
the variable is  a bx x  and in eq. (7), the variable is 

 b ax x . 
 If a bx x  at all times, the motion is completely described 
by Eq. (6).  The angular frequency of oscillation is given by 

1 0
g
l

    … (8) 

 This frequency is the same as that of the angular frequency 
of either pendulum when they are isolated i.e., the effect of 
spring is absent.  This is due to the fact that both pendulums 
are in phase always and the spring has the natural length 
throughout its motion. 
 If a bx x   always, the motion is completely described by 
Eq. (7).  In which case, the angular frequency is given by 
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2
2 0 2 k

m
    

 
 … (9) 

 From eq. (8) and (9), it is clear that 2 1  .  Hence the 
two pendulums are oscillating harmonically with a frequency

2 .  They are always out of phase. 
 Thus during this motion, the spring is extended and also 
compressed.  Hence the coupling is effective in this case. 
 Normal coordinates and Normal modes : The normal 
coordinates of a coupled systems are the parameters in terms 
of which the equations of motion of the system can be 
expressed as a set of linear differential equations with 
constant coefficients in which each equation contains only 
one dependent variable. 
 The simple harmonic motion associated with each normal 
coordinate is called a normal mode of the coupled system.  
Each normal mode has its own characteristic frequency, 
called the normal mode frequency.  In the case of two coupled 
pendulums, normal mode frequencies are 1  and 2 .  In the 
first mode, both pendulums are displaced through the same 
distance from the equilibrium position in the same direction 

so that b

a

x l
x

 . When they are released, each executes S.H.M. 

with the same frequency 1
g
l

   They are always in phase 

and b

a

x l
x

 throughout its motion. This is called in phase mode 

of the system. 
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ax


b ax x


ax


b ax x


ax


b ax x 


 In the second mode, both pendulums are displaced through 
the same distance from equilibrium position in opposite 

directions, so that 1a

b

x
x

  . When they are released, each 

pendulum executes S.H.M. with frequency. 

2
2 0

2 2k g k
m l m

    

 They are always out of phase, and b

b

x l
x

  through out the 

motion.  In this case, both the pendulums cross their 
equilibrium position simultaneously.  This is called out of 
phase mode of the system. 

Normal Modes Solution : The equations governing the 
motion of the pendulum are 

 
2

2
02

a
a b a

d x kx x x
dt m

   

 and  
2

2
02

b
b b a

d x kx x x
dt m

     Eq. (4) & (5) 

 The above differential equations are solved to obtain 
normal modes.  Consider that a normal mode exists at an 
angular frequency w and phase constant f.  This means that 
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both the pendulums move with a S.H.M. with the same 
angular frequency w and with the same phase constant f. They 

 cosax C t f   … (10) 

 and  1 cosbx C t f   … (11) 
 where C and C1 are the amplitudes which may be different.  
From Eq. (10) and (11), we get 

 
2

2 2
2 cosa

a
d x C t x
dt

       

 and  
2

2 2
2 cosb

b
d x t x
dt

       

 Hence  2 2
0a a b a

kx x x x
m

    

2 2
0 a b

k kx x
m m

      
 

 … (12) 

 And 2 2
0 b a

k kx x
m m

     
 

 … (13) 

From Eq. (12), we get 

2 2
0

a

b

k
x m
x k

m
 

 
 
 

        

 … (14) 

Similarly, from Eq. (13), we get 
2 2
0

a

b

k
mx

kx
m

         
 
 
 

 … (15) 

From Eq. (14) and (15), we get 
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2 2
0

2 2
0

kk
mm

kk
mm

 

 

              
             

2 2
2 2
0

k k
m m

                

2 2
0

k k
m m

          
Thus we have two solutions for w which may be denoted by 
w and w. 
 2 2

0   … (16) 

and 2 2
0 2 k

m
      

 
 … (17) 

 The +ve roots of Eq. (16) and (17) are the two normal 
frequencies of the system i.e., of the two modes.  The angular 
frequency of mode 1 is while that of mode 2 is   . 
 The configuration of mode 1 can be obtained by 
substituting 2 2

0   in Eq. (14) or (15). Thus, we get 

mode l

1a

b

x
x

 
 

 
 and 

1

mode l

1C
C

 
 

 
 from Eq. (10) & (11) 

 Hence 
1C= =1a

b

x
x C

   
   

   mode lmode l

 … (18) 

The displacement of oscillators in mode 1 are given by 
   11 cosax C t f   … (19) 

and    11 cosbx C t f   … (20) 
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The displacement of oscillators in mode 2 are given by 

   22 cosax D t f   … (21) 

and    22 cosbx D t f    … (22) 
The most general solution is given by the superposition of the 
two normal modes. 

   1 2a a bx x x 

   1 2cos cosC t f D t f    

   1 2b b bx x x 

   1 2cos cosC t f D t f    

 These are known as normal modes. 

 9. Explain the theory of N-coupled oscillators. 
Ans: N-coupled Oscillators : Consider a flexible elastic 
string of negligible mass supporting n identical particles each 
of mass m equally spaced at distances l along its length as 
shown in Fig. (a). The string is fixed at both ends, so that a 
constant tension T is present at all points and at all times in 
the string.  The masses are located at distances x = l, 2l, 3l, 
…. Nl.  The total length of the string is (N + 1) l.  The two 
particles at the fixed ends are considered as if they were 
particles of zero displacement. 
 Fig. (b) shows the configuration of (p – 1), p and (p + 1)th 
particles at some instant time during their transverse 
oscillation. Here it is assumed that the amplitude of these 
oscillations is very small, so that the initial tension t in the 
string does not change as the particle oscillate. 
 Equation of Motion: Fig. (b) represents the configuration 
of the particles at a certain instant of time during their 
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transverse oscillation.  Consider successive particles indicated 
as the pth particle together with two of its immediate 
neighbours (p – 1)th and (p + 1)th particles.  Let their 
displacements from the equilibrium position be  1,p py y   and 

 1py   respectively, where p = 1, 2, 3 …. (N – 1), N. 

Fixed

m

0
1 2 3 (N-1) N

Fixed

m m m m

(a)
l l

N + 1

m T

(p-1)

m
m

T

pl (p+1) l
(b)

1py 

t
p

1p  1py 

 The resultant y – component of force on the pth particle is 
given by 

1sin sinp p pF T a T a    As a is small, sin a = tan a

1sin tanp p pF T a T a     … (1) 
From Fig. (b), we have 

1tan p p
p

y y
l

  
  and 1

1tan p p
p

y y
l

 





Substituting the above values in Eq. (1), we have 
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   1 1p p p p p
T TF y y y y
l l     

 1 1 2p p p
T y y y
l    

 This force must be equal to mass m times the transverse 
acceleration of the pth particle.  Thus the equation of motion 
of the pth particle can be expressed as, 

 
2

1 12 2p
p p p

d y Tm y y y
dt l    

 
2

1 12 2p
p p p

d y T y y y
dt ml      … (2) 

 This is the differential equation for the pth considered 
particle.  By putting p = 1, 2, 3, … N, we have a set of N 
differential equations. 
 Here we have the following two boundary conditions, viz., 
  x = 0 0 0y 

and   1x N l  1 0Ny    … (3) 
 Notmal Modes : For normal modes, Let there may be a 
mode with angular frequency w and phase constant f.  In 
normal mode, all particles execute simple harmonic 
oscillations with the same frequency w and constant phase f.  
Thus for the pth particle, 

 cos 1p py A t    … (4) 
 where pA  is the amplitude of simple harmonic oscillations 
of the pth particle.  
Similarly, 

 1 1 cosp pY A t f   and   1 1 cosp pY A t f  
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From Eq. (4), we have  
2

2
2 cosp

p

d y
A t f

dt
   

Substituting this value in Eq. (2), we have 

     2
1 1cos 2 cosp p p

Tt f A A A t f
ml

        

  2
1 1 2p p p p

TA A A A
ml

    


2

1 1 2p p p
mlA A A

T


 

 
   

 
 … (5) 

 Applying boundary conditions 0 0A   and 1 0pA   , in Eq. 
(5) represents a set of N equation which have to be 
simultaneously solved to get the possible mode of 
frequencies.  

General solution : EQ. (5) can be rewritten in the 
following form : 

2
1 1 2p p

p

A A ml
A T

 
  Put 2

0
T
ml




2 22

1 1 0
2 2
0 0

22p p

p

A A
A

 
 

  
    … (6) 

 Here p = 1, 2, 3 …. N.  For any particular value of w, the 
R.H.S. of Eq. (6) is constant and is independent of p.  Hence 
the ratio of L.H.S. must also be a constant and independent of 
p.  What values must be given to 1,p pA A   and 1pA   so that the 
above condition is satisfied and at the same time 

0 0A   and 1 0NA   .  
 Let us assume that the amplitude of pth particle be 
represented by sinpA C p q   … (7) 
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 where q is some angleso that  1 sin 1pA C p q  

 and  1 sin 1pA C p q  

    1 1 sin 1 sin 1p pA A C p q p q       
2 sin cosC p q q

 But C sin p q = Ap
1 1 2 cosp p

a
p

A A
A

 


 The R.H.S. is independent of p.  So that the assumed 
solution is also found to be true .This will satisfy all N 
equations.  The value of q can be obtained by applying the 
boundary conditions viz., 0pA   for p = 0 and p = (N +1).  
This condition will be satisfied if (N + 1) q is an integral 
multiple of q i.e., 
 (N + 1) q = n  Where n = 1, 2, 3, …. 

 1
nq

N


 


  … (9) 

 Substituting this value of q in Eq. (7), we get 

 
sin

1p
pnA C
N





  … (10) 

 The permitted frequencies of the normal modes can be 
determined from Eq. (6) and (8) as given below.  We have 

2 2
1 1 0

2
0

2 2cosp p

p

A A
A

  


  
 

2 2 2
0 02 2 cos     

  2 2
02 1 cos   

2 2 2 2
0 02 2sin 4 sin

2 2
          
   
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 0
n2 sin  and = 

2 N+1
      
 

 … (11) 

 In the above Eq. (11), the different values of n give the 
different normal mode frequencies.  Hence in general, Eq. 
(11), can be written as 

 02 sin
2 1n

n
N
 

 
   

  … (12) 

 At each frequency, the pth particle has the amplitude give 

by
 

sin
1p

pnA C
N

 
   

  … (13) 

 10. Derive wave equation in a continuous medium.  (OR) 
Derive classical wave equation. 

Ans: The wave equation : The equation of motion of the pth

particle is given by. 

 
2

1 12 2p
p p p

d y T y y y
dt ml    

  Consider the limiting case when 1 x  and 0x 
Now the masses merge into a continuous heavy string.  In 
which case 

2
1 1

2

2p p p pd y y y yT
dt m x

   
  

 

1 1p p p py y y yT
m x x 

       
     

    

But 
2

2
x dx x

dy dy d y dx
dx dx dx

          
     
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 When, the subscripts can be dropped and the equation of 
motion for the harmonic oscillator at position x can be 

expressed as
2 2

2 2
d y T d y dx
dt m dx


2

2
T d y

dx
 … (1) 

 Since mp
dx

  represents the mass per unit length i.e., linear 

density of the string.  Hence Eq. (1) can be written as 
2 2

2
2 2

d y d yV
dt dx

  … (2) 

 where /v T   has the dimensions of velocity. Eq. (2) is 
the second order linear partial differential wave equation.  It is 
called the classical wave equation. 

SHORT ANSWER QUESTIONS 

 11. Define Simple Harmonic Motion. Give its 
Characteristics. 

Ans: Simple Harmonic Motion: This is a special type of 
periodic motion in which the body moves along a straight line 
such that its acceleration is always directed towards a fixed 
point, and is directly proportional to its displacement but 
opposite in direction.
Characteristics of simple harmonic motion: 

e) The motion is periodic. 
f) The motion is along a straight line about the mean 

position. 
g) The acceleration is proportional to displacement and 

in opposite direction. 
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h) Acceleration is always directed towards the mean 

position. 

 12. Define damping. Explain over damped, critically 
damped, under damped motions. 

Ans: Damping:For an ideal harmonic oscillator, the 
amplitude of vibration remains constant. When a body 
vibrates in a medium which offers resistance to its motion, the 
amplitude of vibration decreases gradually and finally the 
body comes to rest. This is due to the resistance offered by the 
medium. Then the motion of the body is known as damped 
harmonic motion. This phenomenon is called damping  

Example:If we displace a pendulum from its equilibrium 
position it will oscillate with decreasing amplitude and finally 
comes to rest in equilibrium position. 
Over damped motion:In this case the body once displaced 
returns to its equilibrium position very slowly without 
performing any oscillation. This type of motion is called as 
over-damped or dead beat.  
Ex: This type of motion is shown by a pendulum moving in 
thick oil or by a dead beat moving coil galvanometer 
Critical Damping:  In this case the particle tends to acquire 
its position of equilibrium much rapidly than inOver damped 
motion.Such a motion is called critical damped motion. 

Ex:Motion of pointer in the instruments such as voltmeter, 
ammeter etc., In this the pointer moves to correct position and 
comes to rest without any oscillation in minimum time. 
 Under damped motion:  In thisthe amplitude of the motion 
is continuously decreasing owing to the factor bte which is 
called damping factor. The amplitude varies between btae
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and btae . The decay of the amplitude depends upon the 
damping coefficient ‘b’. It is called “under damped” motion. 

Ex:The motion of a pendulum in air, the motion of the coil 
of ballistic galvanometer or the electric oscillations of LCR 
circuit. 

 13. Explain Logarithmic decrement and Relaxation time 
Ans: Logarithmic decrement measures the rate at which the 
amplitude decreases. The amplitude of damped harmonic 
oscillator is given by,  amplitude = btae . 
At t=0, amplitude 0a a

Let 1 2 3, , ....a a a be the amplitudes at time t = T, 2T, 3T 
…respectively, where T= period of oscillation. Then,  

1
bTa ae ,

(2 )
2

b Ta ae , (3 )
3

b Ta ae ...   

From these equations we get, 0 1 2

1 2 3

...... bTa a a e
a a a

   

( )e where bT  
Taking the natural logarithm, we get, 

0

1

log loge e
ae
a

  1 2

2 3

log log .......e e
a a
a a

 

0 1 2

1 2 3

log log log .....e e e
a a a
a a a

   

Where is known as logarithmic decrement.
Thus logarithmic decrement is defined as the natural 

logarithm of the ratio between two successive maximum 
amplitudes which are separated by one period. 
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Relaxation time:The relaxation time is defined as the time 
taken for the total mechanical energy to decay to (1/e)th of its 
original value.  

The mechanical energy of damped harmonic oscillator is 

giveby. 2 2 2 2 21 1
2 2

btE m A m a e     btA a e

Let 0 0,E E when t 

2 2 2
0 0

1
2

btE m a Now E E e     … (1) 

Let   be the relaxation time, i.e. at t= , 0EE
e



2 1 20
0

12 1
2

b bE E e e e b
e b

         τ τ  … (2) 

From eqs. (1) and (2) we get 0

t

E E e 


  … (3) 
The expression of power dissipation can be written as  

EP


  … (4) 

14.  Explain Quality factor or Q- factor 

The quality factor is defined as 2π times the ratio of the 
energy stored in the system  and the energy lost per period. 

2 2energy stored in system EQ
energy lost per period PT

    … (5)

Where P is the power dissipatedand T is periodic time. We 

know that EP




Where is the relaxation time . So,  
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22 EQ Q

E TT

 



   
 
 
 

 … (6) 

where 2
T
  = angular frequency. 

 15. Define natural and forced vibrations and resonance. 
Sol: Natural or free vibrations: When a body is made to 
vibrate and left free itself it always vibrates with a frequency 
known as natural frequency. Those vibrations are called 
natural or free vibrations.  

Forced vibrations:When the body vibrates with a 
frequency other than its natural frequency under the action of 
an external periodic force, then those vibrations are called 
Forced vibrations 
Amplitude resonance:The amplitude of forced oscillations 
varies with the frequency of applied force and becomes 
maximum at a particular frequency. This phenomenon is 
known as amplitude resonance 

 16. Explain the Sharpness of resonance. 
So l: We have seen that amplitude of the forced oscillation is 
maximum when the frequency of the applied force has a value 
to satisfy the condition of resonance i.e. 2 2( 2 )p b  . If 
the frequency changes from this value, the amplitude falls. 
When the fall in amplitude is very large, for a small change in 
the resonance condition the resonance is said to be sharp. If 
the fall in amplitude is small, the resonance is termed as flat. 
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Thus the term sharpness of resonance means the rate of fall in 
amplitude with the change of 
forcing frequency on each 
side of resonance frequency. 
  The graph shows the 
variation of amplitude with 
forcing frequency at different 
amounts of damping. It is 
observed from the figure that, 
the resonance is sharp for 
smaller damping ( curve-2) 
and the resonance is flat 
when damping is 
large(curve-3). Hence, smaller is damping, sharper is 
resonance or larger is the damping, flatter is the resonance. 
When there is no damping (curve-1) the amplitude becomes 
infinity. 

17. What are Coupled oscillators. Give examples.
Ans: Coupled oscillators :When the oscillations ofthe 
oscillators are coupled with one another, they are called 
coupled oscillators. In this the motion of one oscillator is 
effected by the other. 

m
k

m
(a)

k

m

(b)
kk

m

C L

(c)

CL

Ex:   Two coupled oscillating systems are shown in Fig. The  
fig (a) shows two simple pendulums with their bobs 
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connected to each other by a spring. Fig (b) shows two 
masses attached to each other by three springs.  The middle 
spring provides the coupling.  Fig (c) shows the coupled LC 
circuits. 

18. What are Normal coordinates and Normal modes 
Ans: The normal coordinate of a coupled system are the 
parameters in terms of which the equations of motion of the 
system can be expressed as a set of linear differential 
equations with constant coefficients in which each equation 
contains only one dependent variable. 
     The S.H.M. associated with each normal coordinate is 
called a normal mode of the coupled system. 

A two coupled oscillator has two normal modes, as in 
phase mode and an out of phase mode.  The in phase mode 
has a frequency equal to the natural frequency of either of the 
oscillators.  The out of phase mode has a frequency slightly 
greater than the natural frequency of the oscillators. 
  Significance: the normal modes of vibration are 
entirely independent of each other. The energy associated 
with the normal mode is never exchanged with another mode. 
So we can add the energies of the separate modes to get total 
energy.  
       The general motion of any coupled system can always be 
represented as a superposition of all possible normal modes.  
 Thus during this motion, the spring is extended and also 
compressed.  Hence the coupling is effective in this case. 

 19. Derive wave equation in a continuous medium.  (OR) 
Derive classical wave equation. 
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Ans: The wave equation : The equation of motion of the pth

particle is given by. 

 
2

1 12 2p
p p p

d y T y y y
dt ml    

  Consider the limiting case when 1 x  and 0x 
Now the masses merge into a continuous heavy string.  In 
which case  

2
1 1

2

2p p p pd y y y yT
dt m x

   
  

 

1 1p p p py y y yT
m x x 

       
     

    

   But 
2

2
x dx x

dy dy d y dx
dx dx dx

          
     

 When, the subscripts can be dropped and the equation of 
motion for the harmonic oscillator at position x can be 

expressed as   
2 2

2 2
d y T d y dx
dt m dx


2

2
T d y

dx
        … (1) 

 Since mp
dx

  represents the mass per unit length i.e., linear 

density of the string.  Hence Eq. (1) can be written as 
2 2

2
2 2

d y d yV
dt dx

                   … (2) 
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 where /v T   has the dimensions of velocity. Eq. (2) is 

the second order linear partial differential wave equation.  It is 
called the classical wave equation. 

SOLVED PROBLEMS 

 20. A simple harmonics wave is represented by y = 10 sin 
 
 
 

2πt + θ
T

. The time period is 30 seconds. 

So l: When t=0, the displacement is 5 cm. Find (a) the phase 
angle at t=7.5 sec (b) phase difference between two points at a 
time interval of 6 sec.                         

Given  210sin ty
T
    

 
 and T=30 sec   when  t= 0,  

y = 5cm = 0.05 m  
5 15 10sin sin

10 2
        phase angle = 300 

When the time is t1,  y = 10 12sin t
T
   

 
.  

When the time is 2
2

2, 10sin tt y
T
    

 
So the phase difference for 6 sec is  
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2 12 2t t
T T
 

           
   

 2 1
2 t t
T


 

  02 26 72
30 5
 

  

 21. The displacement equation of a particle describing 

SHM is x = 0.5  
 
 

pcos 10pt +
3

. Calculate (a) 

amplitude, (b) frequency, (c) phase, (d) displacement 
after 1 sec. 

So l:Displacement 0.5cos 10
3

x t    
 

we have   sinx a t    Comparing,   
a) amplitude 0.5 , 2 10a m n     
b) frequency n = 5 Hz 

c) Phase 
3
 

d) after 1 sec   310.5cos 10 0.5 cos
3 3

x     
 

  0.5 0.5 0.25m 

 22. The displacement of a linear harmonic oscillator is 

given by x = 4 sin
3 6

t   
 

.  Find the period and 

velocity at t = 1 sec. 

Sol:Displacement 4sin
3 6

x t    
 
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we have  sinx a t    comparing, 
3
 

2 6sec 4 cos
3 3 3 6

d xT we have V t
T d t
                 

   

 23. A simple harmonic wave is represented by x = 10
 
 
 

2πsin t + θ
T

. The time period is 30 sec. When t = 0, 

the displacement is 5cm.  Find the phase at t = 7.5 
sec. and the phase difference between two points at a 
time interval of 6 sec. 

Sol:phase
  02 7.52 30 120
30

t
T

     

Let 1 and 2 be the phase angles corresponding to the times  
t1 and t2. Then, 

1 1
2 t
T
    and 2 2

2 t
T
  

 Phase difference 2 1   2 1
2 2 26

30 5
t t rad

T
  

   

 24. A particle executing simple harmonic motion is 

represented by x = 10  
 
 

πsin 10t -
6

.  Calculate the 

frequency, time period, maximum displacement, 
maximum velocity, displacement, velocity and 
acceleration at time t = 0. 

Sol:We know that  sinx a t   .  

Given 10sin 10
6

x t    
 

. 
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Comparing the two,  a=10m, and 10Hz 

Frequency 10 1.6
2 2

n Hz
 

  

Time period  2 2 0.63sec
10

T  


   . 

Maximum displacement a = 10 m 

Velocity  cosdx a t
dt

    .   

Velocity is maximum when  cos 1t  

1

max

10 10 100dx a ms
dt

       
 

Acceleration  
2

2
2 sind x a t

d t
    .   

Acceleration is maximum when  sin 1t  

 
2

22 2
2

max

10 10 1000d x a ms
d t

  
     

 

At t=0, 110sin 10 5
6 2

x m          
   

    110 10 cos 100 0.866 86.6
6

dx ms
dt

      
 

 
2

22 2
2

110 10 sin 1000 500
6 2

d x a ms
d t

                
    

 25. The amplitude of a seconds pendulum falls to half 
initial value in 150 sec. calculate Q-factor. 
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Sol:We have 0
0

bt btaa a e e
a

    given 
0

1
2

a
a



and   t = 150 sec. 

       150 150
10

1 2 150 log 2 2.303 log 2
2

b b
ee e b      

0.6932150 0.6932 0.00462
150

b b    

we have 1 1
2 0.00924b

    and 2
T
 

  12 3.14
3.14 sec

2
rad  

1factor 3.14 340
0.00924

Q Q        
 

 26. The amplitude of an oscillator of frequency falls to 
1/10 th of its initial value after 2000 cycles. Calculate 
i) relaxation time ii) Q- factor iii) time in which its 
energy falls to 1/10th of initial value  iv) damping 
constant. 

Sol:We have 0
0

bt btaa a e e
a

   

Given
0

1
10

a
a

   and   t = 10 sec. 

   10 101 10
10

b be e   
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   1010 log 10 2.303 log 10eb  

2.30310 2.303 0.2303
10

b b    

We have relaxation time 
 

1 1 2.174sec
2 2 0.2303b

   

 2Q factor Q n      

 27. The Q-value of a spring loaded with 0.3 kg is 60. It 
vibrates with a frequency of 2 Hz. Calculate the force 
constant and mechanical resistance. 

Sol:frequency 1
2

kn
m

  where k = force constant 

 2

1 12= 4=
2 0.3 0.34

k k
 



 2 116 0.3 47.37k Nm   

 We have 1 1 2
2

m and n
rb r
m

     
 
 
 

 2mQ factor Q n
r

     

      12 2 0.34 2 0.3
0.6282

60
n m

r kg s
Q

    
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 28. A condenser of capacity 20 F  is discharged through 

an inductance of 10 mH. Calculate the frequency of 
resultant oscillation. 

Sol:frequency 1
2

n
LC



  3 6

1 356.12
2 10 10 20 10

Hz
  

 
 

 29. Deduce the frequency and Q – factor for a circuit 
with L = 2 mH, C = 5 μF and R = 0.2 . 

Sol:frequency 1
2

n
LC



  3 6

1 1592
2 2 10 5 10

Hz
  

 
 

     32 3.14 1592 2 102
99.9

0.2
n LLQ

R R



   


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UNIT-V 

ESSAY QUESTIONS 

 1. Derive the general wave equation for a transverse 
wave propagation along a stretched string and its 
general solution. 

Ans: : Consider a string stretched in positive X- direction in 
which a teraservers wave travelling. Consider a point P at a 
distance x from the origin O . The vibrations at P lags behind 
a phase . Let V  be the velocity of the wave in positive  
X- direction.  
The equation of motion of a particle at O is siny a t  So 
the equation of motion of a particle at O is 

 siny a t  

But  2phase difference path difference




2 x


 

2 2sin sin 2y a t x y a nt x  
 

           
   
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   2 2sin siny a nt x y a Vt x 
 

     

  If we consider the propagation along negative  

X- direction  2siny a V t x


 

 y f Vt x    … (1) 
Differentiating the equation  (1) w.r.t.timet,

 1d y V f Vt x
d t

  

 
2

2
2

d y V f Vt x
d t

   … (2)

Differentiating the equation (1) w.r.t. x,

 1d y f Vt x
dx

    
2

2
d y f Vt x
d t

    … (4) 

 
2 2

2
2 22 d y d yV

d t d x
  

 This is the general wave equation. 
  General solution of wave equation: the general 
solution can be written as, 

   1 2y f Vt x f Vt x   
In simple harmonic terms the solution can be written as,  

 siny a t k x 

  Where   the angular frequency and k is the 
propagation constant. 

We have 2
n
    and  2k 



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 2 2sin 2 siny a nt x y a n t x  
 

      
 

   2sin ....... 1y a V t x


  

This is called the differential form of the wave equation. 
  General solution of wave equation:Any arbitrary 
functions of the form  V t x or  V t x  will be the 
solution of the wave equation. Hence the most general 
solution will be the linear combination of the two. 

   1 2y f V t x f V t x      … (2) 
  In simple harmonic terms the motion of a particle can 
be expressed by   sina t   or  

 cosa t  . But we have 2 x




2siny a t x


    
 

  or 2cosy a t x


   
 

 2 2sin 2 siny a n t x y a n t x  
 

       
 

 2siny a v t x


  
2siny a t x


    
 

 siny a t kx   where 2k 




or  y a cos t k x 
  Hence the general simple harmonic solution can be 
written as, 

   
   

1 2

1 2

sin sin

cos cos

y a t kx a t kx

b t kx b t kx

 

 

   

   
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  Significance :  consider a transverse wave  travels 
along a medium. By substituting the boundary conditions for 
the displacement x we can obtain the positions of nodes and 
antinodes in the medium along the wave propagation. 

 2. Derive an expression for the velocity of a transverse 
wave along a stretched string. 

Sol: Consider a perfectly flexible, uniform string with linear 
density ‘m’ kept under a constant tension ‘T’. Let a transverse 
wave travel along the string as shown. Consider a small part 
of the string ‘PQ’. It can be considered as an arc of a circle of 
radius r with center ‘O’. The tension T in the string acts along 
the tangents drawn at the points ‘P’ and ‘Q’. let C be the point 
of intersection of the two tangents. OC is the bisector of the 
angle POQ .   

Let 2POQ POC QOC     
090and OPC OQC  

 90PCO QCO     

  The tension at P and 
Q can be resolved into two 
rectangular components. 
The horizontal components 

cosT   along CM and CK 
cancel each other. The 
vertical components along 
CO add together and form 
the necessary centripetal 
force.  

M K

O

T

P Q

T

B

C

T Sin

T Cos T Cos

T Sin

 

Q  90o 
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Component of tension at P  along 

CO =  cos 90 sinT T  

Component of tension at Q  along 
CO =  cos 90 sinT T  

  Total tensional force acting along CO = sinT   + 
sinT   = 2 sinT 

= 2  sinT is very small   

From the sector PQO, arcangle
radius



2
2

PQ PQ
r r

    

Tensional force acting along CO  =   2 2
2

T PQPQT T
r r

  

Centripetal force = 
 2mass velocity

r
  Mass of the considered element PQ = linear density x 
length  = m (PQ) 

   Centripetal force =   2m PQ V
r

    2
2T PQ m PQ V

Hence T mV
r r

  

2 T TV V
m m

  
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 3. Explain the modes of vibration of stretched string 

clamped at ends. 
Sol: For a stretched string the general wave equation solution 
can be taken as,      

   1 2sin sinx a t k x a t k x    

   1 2cos cosb t k x b t k x    
Where 1 2 1 2, , ,a a b b  are constants 

  As the string is rigidly supported at the ends, the 
boundary conditions are, y=0 at x=0 at all time‘t’ y=0 at x=l
at all timet. 

Applying boundary conditions in eq (1), we get,
1 2 1 20 sin sin cos cosa t a t b t b t      

1 2 1 20 ( )sin ( )cosa a t b b t    
As sin t  o, and cos t  o 
Hence, 1 2( )a a =0 and 1 2( )b b =0 
Thus we have,   a1=-a2and b1=-b2
Now eq(1) becomes  

   1 [sin sin ]y a t k x t k x    

   1[ cos cos ]b t k x t k x    

1[{sin cos cos sin } {sin cos cos sin }a t k x t kx t k x t kx      

1[{cos cos sin sin } {cos cos sin sin }]b t k x t kx t k x t kx      
 = 1 12 cos sin 2 sin sina t kx b t k x  

= 1 1( 2 cos 2 sin ) sina t b t kx  
  The solution now consists of two terms, one depending 
on ‘t’ and second on ‘x’. Thus the first boundary condition 
reduces the opposite waves to a stationary wave. Now we 
apply the boundary condition to eq. (3). As sin t  o, and 
cos t  o, hence   sin 0k l kl n  
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 where n=1,2,3,…… 

n
nk
l


  , where n=1,2,3,…
2n
vv n
l

    
 

                                                        wheren=1,2,3…. 
2 2

2 2 2
v kV n V Vk v v n

V l l
  
  

            


  This equation represents the mode of vibration 
corresponding to nth harmonic frequency. The different modes 
of vibration are shown in fig . 
The fundamental frequency corresponding to n=1 is given by, 

1
1

2 2
V T TV

l l m m


          
     



The nth harmonic mode of frequency is given by  

2n
n Tv
l m

   
 

OVERTONES AND HARMONICS: 
  Let us consider the case 
of a string fixed at the two ends 
and plucked [fig.].the 
progressive wave generated in 
the string travel to the both 
ends. As the two ends are 
fixed, no displacement is 
possible at these two ends and 
the waves are reflected with 
phase change. The two waves interfere and produce stationary 
wave with nodes at fixed ends. The frequency of vibration 
will depend on the number of nodes formed between two 
fixed ends of the string. 

/ 2l 

l 

3 / 2l 

N

N

N
N N

A

A A

l
(i)

N (ii)

N (iii)

N (iv)

N
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  When the string is plucked at the middle, it vibrates 
with nodes at the ends and antinodes at the middle[fig]. The 
tone emitted under this condition is known as fundamental or 
first harmonic .the frequency v1 is given by  

2
2

l l    we have  1 Tv
m

   
 

1
1
2

Tv
l m

    
 

  If the string is plucked at the one-fourth of its length, 
the string vibrates in two segments. In this case there is one 
more node[fig.iii] at the middle point. The frequency of the  
vibration of the string is given by ,             

l   we have  1 Tv
m

   
 

1 Tv
l m

    
 

2 1
2 2
2

Tv v
l m

   
 

This is called first overtone or second harmonic. 
  When the string vibrates in three segments [fig (iv)], 
the frequency of the vibration is given by  

3
2

l 
  we have  1 Tv

m
   
 

3 1
3 3
2

Tv v
l m

    
 

This is called second overtone or third harmonic. 
Similarly, when the string vibrates in four segments, then 

4 1
4 4
2

Tv v
l m

   
 

This is called third overtone or fourth harmonic. 
So in case of stretched string, we have  

1 2 3: : .....v v v 1: 2 : 3....
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  Thus the string fixed at both ends has all possible 
harmonics.The frequencies of the harmonics are integral 
multiple of the fundamental. 

 4. Explain about Melde’s strings.
Sol: The strings used in Melde’s experiment for the 
demonstration of transverse wave velocity along a stretched 
string are called Melde’s strings.   

A thread of uniform radius and density is attached to 
one of the prongs of an electrically maintained tuning fork 
and the other end passes over a frictionless pulley and carries 
a known weight.  As the fork vibrates, plane progressive 
waves travel along the thread and is reflected back from the 
pulley.  By properly adjusting the length and the tension, the 
thread can be made into stationary wave pattern with well 
defined nodes.  There are two possible arrangements for 
performing the experiment,  
(1) transverse arrangement and (2) longitudinal arrangement. 
 (1) Transverse arrangement: In this arrangement, the 
fork is placed so that the motion of the prongs is at right angle 
to the thread as shown in Fig. Stationary waves are produced 
due to the superposition of direct waves sent by tuning fork 
and reflected waves from pulley.  It can be shown that as the 
fork completes its one vibration, the thread also completes 
one vibration.  Thus the frequency of the thread is the same as 
that of the fork.  If the thread vibrates in one loop the 
frequency of fundamental node is given by 

1
2

Tn
l m

  … (1) 

Where l is its length, T the tension and m the mass per unit 
length. 
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A B

  Here m and n are fixed, hence the vibrations of the 
thread are maintained by adjusting the length of the thread or 
the tension or both.  If the same length vibrates in p loops 
under a tension Tp, then  

2
pTpn

l m
  … (2) 

From equations (1) and (2), we have 

2

1pT
T p

  or 2p
TT
p

  … (3) 

  This equation shows that if we wish to have p loops in 
the same length then the tension should be reduced to 1/p2 of 
its previous value. 
  (2) Longitudinal arrangement : In this arrangement 
the fork is placed in such a way that the motion of the prongs 
is along the length of the thread as shown in Fig. 

 In this case the frequency of the thread is one half of 
that of the fork ,because in two complete vibrations of the 
tuning fork, the thread completes one vibration.  Thus the 
frequency of the thread is one-half of the fork i.e., n/2. 
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 If the same length l of the thread vibrates in one loop 
under a tension T1, then 

11
2 2
n T

l m
  … (4) 

 Let 1
pT  be the tension applied when the thread vibrates 

in p lops, then 
1

2 2
pTn p

l m
 

   
 

 … (5) 

From equations (4) and (5), we get, 
1

1 2
1pT

T p
  … (6) 

Again comparing equations (2) and (5), we have 
1

4
p

p

T
T   … (7) 

  Hence  in the longitudinal arrangement the same 
length of the thread under the same tension will vibrate in half 
the number of loops than in the transverse arrangement. 

 5. Mention the laws of transverse vibrations. 

Sol: Wehave frequency 1
1
2

Tv
l m

   
 

. Hence  

(1) The frequency of the fundamental note emitted is 
inversely proportional to the length of the string when 
tension and mass per unit length are constant, i.e.. 

1v
l

  when T and m are constants 

(2) The frequency of the fundamental note emitted is 
directly proportional to the square root of the tension 
when the length and linear density are constants. i.e..  
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v T when l and m are constants. 

 (3) The frequency of the fundamental note emitted is 
inversely proportional to the square root of mass per 
unit length of the wire when length and tension are 
constant i.e.. 

1v
m

 when l and t are constants 

 6. What are Ultrasonic waves? Mention the general 
Properties of ultrasonic waves. 

Ans: Sound waves having frequencies from 20Hz to 
20,000Hz are called audible sounds. 
  Sound waves having frequencies less than 20Hz are 
called infrasonic waves. 
  Sound waves having frequencies greater than 
20,000Hz are called Ultrasonic waves. 
Properties of ultrasonic waves: 

1. These are highly energetic. Their speed of propagation 
depends on their frequency.  

2. They have small amount of diffraction due to their 
smaller wavelength. 

3. Due to their smaller wavelength, ultrasonic can be 
transmitted over long distances without much loss in 
energy. 
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4. Intensive ultrasonic waves have a destructive effect on 

liquids, by causing bubbles in them. 
5. When a plane stationary ultrasonic wave is produced in 

a liquid, it acts as a grating todiffract the light. 

 7. Explain the production of ultrasonic waves by 
magnetostriction method. 

Ans: Definition:A rod of ferromagnetic material undergoes 
changes in its length when an alternating magnetic field is 
applied parallel to its length. This phenomenon is called 
magneto striction. 
  The change in length depends only on the nature of the 
material and the magnitude of the field.
Experimental arrangement: The experimental arrangement 
is shown in the figure.  

  It consists of a ferromagnetic rod AB which is clamped 
at the middle. The rod is permanently magnetized in the 
beginning by passing a direct current in the coil which is 
wrapped round the rod. There are two other coils L1 and L2
which are wrapped along the rod as shown. The coil L2 is 
connected in the collector circuit while L1 is connected in the   
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base circuit of a NPN transistor. The frequency of the 
oscillating collector circuit is adjusted with the help of a 
variable condenser ‘C’. When the frequency of the collector 
circuit is same as the natural frequency of the rod resonant 
vibrations are produced. These vibrations are maintained due 
to coupling provided by the coil L1. 
  Working:  When the collector current passing through 
the coil L2 is changed, it causes a corresponding change in the 
magnetization of the rod. Hence there is a change in the 
length of the rod. This variation in length causes a variation in 
the magnetic flux of the coil L1 and an induced emf is 
produced. It is connected to the base as feedback. So the 
collector current changes correspondingly. By this cyclic 
action, the vibrations of the rod are maintained. 

 8. Explain the production of ultrasonic waves by 
piezoelectric method.

Ans: Certain crystals like quartz or tourmaline have a 
peculiar property when such crystal slice is cut properly and 
pressure is applied to its opposite faces, then equal and 
opposite charges are developed across the perpendicular 
faces. This is known as Piezo-electric effect. When the 
applied pressure is changed to tension, the sign of the charges 
is reversed. 
  The converse of piezo-electric effect is also true. When 
a potential difference is applied on the opposite faces of 
piezo-electric crystal it undergoes deformation along the 
perpendicular faces. This converse effect is used in the 
production of ultrasonics. 
  Experimental arrangement:The arrangement consists 
of a quartz crystal PQ, which shows a piezo-electric effect. It 
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is placed between two electric plates C and D. These plates 
form a condenser with crystal as dielectric. The plates C and 
D are connected to the secondary coil L3 of the transformer. 
L1 is the base coil of the transistor which is coupled with 
collector coil L2.The coil L1 contains a variable capacitor C1 . 
The transistor circuit acts as an oscillator. The frequency of its 
oscillation is controlled by the variable capacitor.  

  By the action of transformer an oscillatory emf is 
induced in the coil L3.Theemf is applied on the crystal along 
the plates C and D. The capacity of the condenser is changed 
until the frequency of tuned circuit matches with the natural 
frequency of the crystal. Then the crystal vibrates and 
produce ultrasonic wave. 

 9. Explain about the methods for detecting the 
ultrasonic waves. 

Ans: (1) Kundt’s tube method: When ultra sonic waves are 
passed through Kundt’s tube the lycopodium powder 
sprinkled in the tube collects in the form of heaps at the 
nodes. The average distance between two consecutive heaps 

gives the value of 
2
 . From that value the wavelength and 

hence the frequency of the waves can be estimated. 

UNIT–V (P1EM) 161 
  (2) Sensitive Flame method:A narrow sensitive flame 
is moved along the medium to detect ultrasonic waves. The 
flame remains steady at antinodes and flickers at nodes. This 
is due to maximum change in pressure. Then by noting the 
positions of nodes and antinodes the wave length and the 
frequency can be estimated. 
  (3)Thermal detector method:In this method a fine 
platinum wire is moved in the medium of ultrasonic waves. 
The temperature of the wire changes, because of alternate 
compressions and rarefactions. This temperature change 
occurs at nodes, while the temperature remains constant at 
antinodes. Hence there is a change in the resistance of 
platinum wire at nodes and remains constant at antinodes. 
This change in resistance can be detected by using 
Whetstone’s network. The bridge will be in balanced position 
at antinodes. From this the wavelength and the frequency can 
be estimated. 
  (4) Piezo-electric detector: The quartz crystal can also 
be used for the detection of ultrasonics. When one pair of 
faces of quartz crystal is subjected to ultrasonics, opposite 
charges are developed on the other pair, perpendicular to the 
first. These charges are very small. So they are amplified and 
detected by suitable methods. 

 10. Explain the applications of ultrasonic waves. 
Ans: Because of smaller wavelengths ultrasonics are used in 
a wide range of regions. 

(i) These are used for the detection of structure of matter.
(ii) The flaws in metals can be detected by using these 

waves. 
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(iii) These waves can be used for cleaning utensils, 

washing clothes, removing dust. 
(iv) In SONAR these waves are used for detecting the 

depth of sea. 
(v) These are used for signaling in under water 

communication for the detection of iceberg,       
submarines under water. 

(vi) These are used to produce alloys of uniform alloys of 
uniform composition. 

(vii)These waves can be used for drilling and cutting 
processes in metals and also forSoldering. 

(viii) Physical and chemical effects: 
a) These are used to produce emulsions of 

immiscible like water and oil. 
b) These are used to produce colloidal solutions of 

metals. 
c) To coagulate small suspended particles. 
d) To release trapped gases in metallurgy. 

 (ix) Medical and biological effects: 
  a) Animals like rats, frogs, fishes etc. Can be killed 

or injured by high intensity  ultrasonics. 
  b) A great relief can be obtained for neurologic pains 

by exposing  those parts to ultrasonics. 
  c) Abnormal growth in brain, certain tumours can be 

detected by ultrasonics. 
  d) Ultrasonics are used in bloodless surgery. 

 11. Explain about SONAR system. 
Ans:Sonar is an acronym for SOundNavigation AndRanging. 
It is a technique that uses sound propagation to communicate 
or to detect objects on or under the surface of the water.
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  Sonar consists of 
transmitter and a detector and 
is installed in a boat or a ship 
as shown in Fig. The 
transmitter produces and 
transmits ultrasonic waves. 
These waves travel through 
water and after striking the 
object on the seabed, get 
reflected back and are sensed 
by the detector.  The detector converts the ultrasonic waves into 
electrical signals which are appropriately interpreted. The 
distance of the object that reflected the sound wave can be 
calculated by knowing the speed of sound in water and the time 
interval between transmission and reception of the ultrasound. 
  Let the time interval between transmission and reception 
of ultrasound signal be t and the speed of sound through sea 
water be V.  The total distance, 2d travelled by the ultrasound is 
then,   2d Vt
  Applications : The sonar technique is used to determine 
the depth of the sea and to locate underwater hills, valleys, 
submarine, icebergs, sunken ship etc. 

SHORT ANSWER QUESTIONS 

 12. Derive an expression for the velocity of a transverse 
wave along a stretched string. 

Ans: Consider a perfectly flexible, uniform string with linear 
density ‘m’ kept under a constant tension ‘T’. Let a transverse 
wave travel along the string as shown. Consider a small part 
of the string ‘PQ’. It can be considered as an arc of a circle of 
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radius r with center ‘O’. The tension T in the string acts along 
the tangents drawn at the points ‘P’ and ‘Q’. let C be the point 
of intersection of the two tangents. OC is the bisector of the 
angle POQ .   

Let 2POQ POC QOC      
090and OPC OQC  

 90PCO QCO     
  The tension at P and 
Q can be resolved into two 
rectangular components. 
The horizontal components 

cosT   along CM and CK 
cancel each other. The 
vertical components along 
CO add together and form 
the necessary centripetal 
force.  

Component of tension at 
P  along 

CO =  cos 90 sinT T  
Component of tension at Q  along 

CO =  cos 90 sinT T  
  Total tensional force acting along CO = sinT   + 

sinT   = 2 sinT 
= 2  sinT is very small   

From the sector PQO, arcangle
radius



2
2

PQ PQ
r r

    

M K

O

T

P Q

T

B

C

T Sin

T Cos T Cos

T Sin

 

Q  90o 
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Tensional force acting along CO  =   2 2
2

T PQPQT T
r r

  

Centripetal force = 
 2mass velocity

r
  Mass of the considered element PQ = linear density x 
length  = m (PQ) 

   Centripetal force =   2m PQ V
r

    2
2T PQ m PQ V

Hence T mV
r r

  

2 T TV V
m m

  

 13. Explain the modes of vibration of stretched string 
clamped at ends. 

Ans: The nth harmonic mode of frequency is given by  

2n
n Tv
l m

   
 

OVERTONES AND HARMONICS: 
  Let us consider the case 
of a string fixed at the two ends 
and plucked [fig.].the 
progressive wave generated in 
the string travel to the both 
ends. As the two ends are 
fixed, no displacement is 
possible at these two ends and 
the waves are reflected with 

/ 2l 

l 

3 / 2l 

N

N

N
N N

A

A A

l
(i)

N (ii)

N (iii)

N (iv)

N



UNIT–V (P1EM) 166 
phase change. The two waves interfere and produce stationary 
wave with nodes at fixed ends. The frequency of vibration 
will depend on the number of nodes formed between two 
fixed ends of the string. 
  When the string is plucked at the middle, it vibrates 
with nodes at the ends and antinodes at the middle[fig]. The 
tone emitted under this condition is known as fundamental or 
first harmonic .the frequency v1 is given by  

2
2

l l    we have  1 Tv
m

   
 

1
1
2

Tv
l m

    
 

  If the string is plucked at the one-fourth of its length, 
the string vibrates in two segments. In this case there is one 
more node[fig.iii] at the middle point. The frequency of the  
vibration of the string is given by ,             

l   we have  1 Tv
m

   
 

1 Tv
l m

    
 

2 1
2 2
2

Tv v
l m

   
 

This is called first overtone or second harmonic. 
  When the string vibrates in three segments [fig (iv)], 
the frequency of the vibration is given by  

3
2

l 
  we have  1 Tv

m
   
 

3 1
3 3
2

Tv v
l m

    
 

 This is called second overtone or third harmonic. 
  Similarly, when the string vibrates in four segments, 
then 

4 1
4 4
2

Tv v
l m

   
 
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This is called third overtone or fourth harmonic. 
So in case of stretched string, we have  

1 2 3: : .....v v v 1: 2 : 3....
  Thus the string fixed at both ends has all possible 
harmonics.The frequencies of the harmonics are integral 
multiple of the fundamental. 
 14. What are Melde’s strings explain.

Ans: The strings used in Melde’s experiment for the 
demonstration of transverse wave velocity along a stretched 
string are called Melde’s strings.   

A thread of uniform radius and density is attached to 
one of the prongs of an electrically maintained tuning fork 
and the other end passes over a frictionless pulley and carries 
a known weight.  As the fork vibrates, plane progressive 
waves travel along the thread and is reflected back from the 
pulley.  By properly adjusting the length and the tension, the 
thread can be made into stationary wave pattern with well 
defined nodes.  There are two possible arrangements for 
performing the experiment,  
 (1) transverse arrangement and (2) longitudinal arrangement. 

 15. Mention the laws of transverse vibrations. 

Ans: Wehave frequency 1
1
2

Tv
l m

   
 

. Hence  

(3) The frequency of the fundamental note emitted is 
inversely proportional to the length of the string when 
tension and mass per unit length are constant, i.e.. 

1v
l

  when T and m are constants 
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(4) The frequency of the fundamental note emitted is 

directly proportional to the square root of the tension 
when the length and linear density are constants.i.e.. 

v T when l and m are constants. 
 (3) The frequency of the fundamental note emitted is 

inversely proportional to the square root of mass per 
unit length of the wire when length and tension are 
constant i.e.. 

1v
m

 when l and t are constants 

 16. What are audible sounds,infrasonic and Ultrasonic 
waves?  

Ans: Sound waves having frequencies from 20Hz to 
20,000Hz are called audible sounds. 
  Sound waves having frequencies less than 20Hz are 
called infrasonic waves. 
  Sound waves having frequencies greater than 
20,000Hz are called Ultrasonic waves. 

17.  Give the Properties of ultrasonic waves 
1. These are highly energetic. Their speed of propagation 

depends on their frequency.  
2. They have small amount of diffraction due to their 

smaller wavelength. 
3. Due to their smaller wavelength, ultrasonic can be 

transmitted over long distances without much loss in 
energy. 
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4. Intensive ultrasonic waves have a destructive effect on 

liquids, by causing bubbles in them. 
5. When a plane stationary ultrasonic wave is produced in 

a liquid, it acts as a grating todiffract the light. 

 18. Definemagnetostrictionand piezo-electric effect
Ans: Magnetostriction: A rod of ferromagnetic material 
undergoes changes in its length when an alternating magnetic 
field is applied parallel to its length. This phenomenon is 
called magnetostriction. 
  The change in length depends only on the nature of the 
material and the magnitude of the field. 
Certain crystals like quartz or tourmaline have a peculiar 
property when such crystal slice is cut properly and pressure 
is applied to its opposite faces, then equal and opposite 
charges are developed across the perpendicular faces. This is 
known as Piezo-electric effect. When the applied pressure is 
changed to tension, the sign of the charges is reversed. 
  The converse of piezo-electric effect is also true. When 
a potential difference is applied on the opposite faces of 
piezo-electric crystal it undergoes deformation along the 
perpendicular faces. This converse effect is used in the 
production of ultrasonics. 

 19. Explain about the methods for detecting the 
ultrasonic waves. 

Ans: (1) Kundt’s tube method: When ultra sonic waves are 
passed through Kundt’s tube the lycopodium powder 
sprinkled in the tube collects in the form of heaps at the 
nodes. The average distance between two consecutive heaps 
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gives the value of 
2
 . From that value the wavelength and 

hence the frequency of the waves can be estimated. 
  (2) Sensitive Flame method:A narrow sensitive flame 
is moved along the medium to detect ultrasonic waves. The 
flame remains steady at antinodes and flickers at nodes. This 
is due to maximum change in pressure. Then by noting the 
positions of nodes and antinodes the wave length and the 
frequency can be estimated. 
  (3)Thermal detector method:In this method a fine 
platinum wire is moved in the medium of ultrasonic waves. 
The temperature of the wire changes, because of alternate 
compressions and rarefactions. This temperature change 
occurs at nodes, while the temperature remains constant at 
antinodes. Hence there is a change in the resistance of 
platinum wire at nodes and remains constant at antinodes. 
This change in resistance can be detected by using 
Whetstone’s network. The bridge will be in balanced position 
at antinodes. From this the wavelength and the frequency can 
be estimated. 
  (4) Piezo-electric detector: The quartz crystal can also 
be used for the detection of ultrasonics. When one pair of 
faces of quartz crystal is subjected to ultrasonics, opposite 
charges are developed on the other pair, perpendicular to the 
first. These charges are very small. So they are amplified and 
detected by suitable methods. 

 20. Explain the applications of ultrasonic waves. 
Ans: Because of smaller wavelengths ultrasonics are used in 
a wide range of regions. 
 i) These are used for the detection of structure of matter. 
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 ii) The flaws in metals can be detected by using these 

waves. 
 iii) These waves can be used for cleaning utensils, washing 

clothes, removing dust. 
 iv) In SONAR these waves are used for detecting the depth 

of sea. 
 v) These are used for signaling in under water 

communication for the detection of iceberg,       
submarines under water. 

 vi) These are used to produce alloys of uniform alloys of 
uniform composition. 

 vii) These waves can be used for drilling and cutting 
processes in metals and also forSoldering. 

Physical and chemical effects: 
  a) These are used to produce emulsions of immiscible 

like water and oil. 
  b) These are used to produce colloidal solutions of 

metals. 
  c) To coagulate small suspended particles. 
  d) To release trapped gases in metallurgy. 
 viii) Medical and biological effects: 
  a) Animals like rats, frogs, fishes etc. Can be killed or 

injured by high intensity  ultrasonics. 
  b) A great relief can be obtained for neurologic pains by 

exposing  those parts to ultrasonics. 
  c) Abnormal growth in brain, certain tumours can be 

detected by ultrasonics. 
  d) Ultrasonics are used in bloodless surgery. 
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 21. Explain about SONAR system. 

Ans:Sonar is an acronym for SOundNavigation AndRanging. 
It is a technique that uses sound propagation to communicate 
or to detect objects on or under the surface of the water.
  Sonar consists of 
transmitter and a detector 
and is installed in a boat 
or a ship as shown in Fig. 
The transmitter produces 
and transmits ultrasonic 
waves. These waves 
travel through water and 
after striking the object 
on the seabed, get 
reflected back and are sensed by the detector.  The detector 
converts the ultrasonic waves into electrical signals which are 
appropriately interpreted. The distance of the object that 
reflected the sound wave can be calculated by knowing the 
speed of sound in water and the time interval between 
transmission and reception of the ultrasound. 
  Let the time interval between transmission and reception 
of ultrasound signal be t and the speed of sound through sea 
water be V.  The total distance, 2d travelled by the ultrasound is 
then,   2d Vt
  Applications : The sonar technique is used to determine 
the depth of the sea and to locate underwater hills, valleys, 
submarine, icebergs, sunken ship etc. 
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SOLVED PROBLEMS 

 22. The progressive wave along a string has a frequency 
40 Hz and a wavelength 50 cm.  The amplitude is 5 
mm.  From the given data, write the wave equation in 
S.I. system. 

Sol: l: Frequency n = 40 Hz 
 But 2   n = 80 rad/sec. 
 Wavelength 50   cm = 0.5 m 
 Wave number 2 / 2 / 0.5 4k      

and amplitude a = 5 mm = 0.005m 
The wave equation is represented by y = a sin (kx - t ) 

 0.005sin 4 80y x t   

 23. A steel wire of diameter 1 cm is kept under a tension 
of 5Kn. The density of steel is 7.8 gm/cm2.  Calculate 
the velocity of waves. 

Sol: The speed of transverse wave v in a string of linear 
density m under a tension T is given by 

/v T m
Here T = 5 KN = 5000 N; 
m = cross section   density =  

   22 31/ 2 10 7.8 10 /kg m     

   22 3

5 1000 12.26 / sec.
0.5 10 7.8 10

v m
 


  

   
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 24. A string of length 8 m fixed at both ends has a 

tension of 49 N and a mass 0.04 kg. Find the speed of 
transverse waves on this string. 

Sol: Here 0.04 0.005 / ;
8

m kg m     T = 49 N and v = ? 

 But 49 98 / sec
0.005

Tv m
m

  

 25. The velocity of a wave in a stretched string of tension 
19.6 N is 500 m/s. Find the velocity of a wave in that 
string with a tension of 78.4N. 

Sol: The speed of a transverse wave v in a string of linear 
density m under a tension T is given by  

1 1

2 2

/ V Tv T m v T
V T

    

178.4 500 4 500 2 1000
500 19.6
v v ms     

 26. Calculate the speed of transverse wave in a wire of 1 
mm2 cross-section under the tension produced by 0.1 
kg. wt. The density of the material of the wire is 9.81 
×  103 kg/m3 and g = 9.81 m/sec2. 

Sol: The speed of transverse wave v in a string of linear 
density m under a tension T is given by 

/v T m
 T = 0.1 kg, wt. = 0.1   9.8 newton 
 m = cross – section area   density 

 23 2 3 310 9.81 10m kg m   
310 9.8kg/metre 
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3

0.1 9.8 10 m / sec
10 9.8

v 


  


 27. The fundamental frequency of vibration of a 

stretched string of length 1m is 256 Hz.  Find the 
frequency of the same string of half the original 
length under identical conditions. 

Sol: Under the constant tension and linear density nl = 
constant 

256 256 2 512
2
ll n n Hz        

 

 28. A steel wire of 0.02 kg mass and 2m length is 
stretched to a tension of 2 N. What is the frequency 
of the fundamental vibration ? 

Sol: Fundamental frequency 1
2

Tn
l m



Given, l = 2m; T = 2N; 0.02 0.01 kg/m
2

m  

1 2 1 200 10 14.142
2 2 0.01 4 1 4 4

n    


3.535 Hzn 

 29. A string of length 0.5m and linear density 0.001 kg 
m-1 kept under a tension 1 N.  Find the first three 
over tones of the string when it is plucked at its mid 
point. 

Sol: The fundamental frequency n is given by 1
2

Tn
l m



 Here T = 1N, l = 0.05 m;  m = 0.0001 kg m-1 and n = ? 
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1 1 100 Hz
2 0.5 0.0001

n  


 When the string is plucked at its mid point, odd 
overtones are present.  
 Hence the string vibrates with 3, 5n, 7n …. 
 Frequency of first overtone = 3n = 3  100 = 300 Hz 
Frequency of second overtone = 5n = 5   100 = 500 Hz  
and Frequency of third overtone = 7n = 7100 = 700 Hz 

 30. A sonometer is arranged to emit a note of frequency 
n. By how much the tension be varied to increase the 
frequency of the note to (5n/3) ? 

Sol: According to second law, 
n T  (l and m being the same)   n T 

 and 5
3
n x

 Eq. (2)   Eq. (1), we get 
5
3

x
T



 Squaring both sides. 
25 25
9 9

x x T
T

  

 Hence the tension is to increase by 25/9 times the 
original value. 

3 1. The fundamental frequency of a sonometer wire 
increases by 5 Hz., if its tension is increased by 21%.  
How will the frequency by affected, if its length is 
increased by 10%? 

So l: The fundamental frequency n is given by  
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1
2

Tn
l m

  …(1) 

  When the tension is increased by 21%, the new tension 
will be 1.21 T and the new frequency will be (n + 5) 

  1 1.25
2

Tn
l m

    … (2) 

 (2)   (1) : 5 1.21 1.1n
n


 

1.1 5 0.1 5 50  Hzn n n n      
  When the length is increased by 10%, the new length 
will be (l + 0.1 l) = 1.1l and the new frequency   is given by 

 
1

2 1.1
Tx

l m
  … (3) 

 (3)   (1):  1
1.1

x
n
  and 50n Hz

 32. Two identical strings are tuned to the same frequency 
of 300 Hz.  The tension of one of the strings is 
increased by 2%.  How many beats per second will be 
heard when the two strings are sounded together ? 

So l: Given frequency n1 = 300 Hz 
 tension T1 = T 
 New tension T2 = T + (2/100) T = 1.02 T 
 New frequency n2 = x 
 According to II law, 
n T   (l and m being the same) 

2 2

1 1

1.02 1.02
100

n T x T
n T T

    
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300 1.02 303 Hzx  
  No. of beats = 303 – 300 = 3 per sec. 

 33. A copper wire of radius 10-3 m has a length of 1 
metre.  It is fixed at both ends and subjected to a 
tension of 104 N.  Calculate (a) the fundamental 
frequency and the frequency of the first two 
overtones (b) the corresponding wave lengths.  
(Density of copper = 8.92   101 kg. m-3). 

So l: Let r be density and m mass per unit length of the wire.  
Then m = area of cross section   density 

   22 3 310 8.92 10r d      
328.01 10 /kg m 

and T = 104 N 
The velocity of the transverse wave is given by 

4
3

3
10 0.593 10 / sec

28.01 10
Tv m
m   


(a) The fundamental frequency n1 is given by 

3

1
0.597 10 298.7

2 2 1
Vn Hz
l


  


The frequency of the first two overtones are 

2 12 2 298.7 597.4 Hzn n   
and 3 13 3 297.5 296.1 Hzn n   
(b) The wave length 1  is given by  

 1
1

2 2
/ 2

v v l m
n v l

    

Hence the corresponding wavelength are 

UNIT–V (P1EM) 179 

2
2 1 1

2
m 

   and 3
2 1 0.667

3
m 

 

 34. In Melde’s experiment it was found that the string 
vibrated in 3 loops when 8 gm were placed in the pan.  
What mass must be placed in the pan to make the 
string vibrate in 5 loops ? (Neglect the mass of the 
string and pan). 

So l: In Melde’s experiment 

2
pTpn

l m
 

  
 

or 2 2 24  constant.pT p l mn  
 If T3 and T5 are the tensions to produce 3 and 5 loops 
respectively, we have 

2 2
5 35 3T T    or  5 3 9 / 25T T

 Here T3 = 8 gm 

5
9 8 2.88 gm wt.
25

T 
  

 35. In a Melde’s experiment when the tension is 100 gm, 
and the tuning fork vibrates at right angles to the 
direction of the string, the later is thrown into four 
segments. If now the tuning fork is set to vibrate 
along the string, find what additional weight will 
make the string vibrate in one segment. 

So l: As in the above question 
2  constantpT p 

 If 1 2T and T  be tension to produce one and two segments 
respectively, we have 
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   2 2
1 1 2pT T    or 

1 100 4 400 gm wt.T   
 Hence additional load required= 400 – 100 = 300 gm wt. 

 36. In Melde’s experiment in the longitudinal mode of 
vibration a string vibrates in 4 loops with a load of 8 
cm.  How much load would be required in order that 
the string may vibrate in 8 loops in transverse mode? 

So l: We know that 
1
2

Tn
l m

   
 

 If L be the total length of the string and N be the number of 
loops, then l = L/N 

2
N Tn
L m

    
 

, 

 In transverse mode, 

1

2
N Tn
L m

   
 

. 

 In longitudinal mode, 

2 22
2
N Tn
L m

   
 

 2 2n n

Now 1 1

2 22
n N T
n N T

 
  

 

or  
2 2

1 1
2
2 2

1
2

N T
N T

    
 

Here 1 28, 4 and N N  3 8T   gm – wt, 
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2

11 64
2 16 8

T    
 

or   1
1 .
2

T gm wt 

Thus load in transverse mode = 500 m gm. 

 37. A Piezo electric crystal has a thickness of 0.002m. If 
the velocity of sound waves in the crystal is 5750 ms-1, 
calculate the fundamental frequency of crystal. 

Sol: We have frequency 
 
5750

2 2 0.002l
  


   

61.4375 10 1.4375Hz MHz  
 38. A Piezo electric crystal has a thickness of 3 ×  10-3m 

has density 3.5 ×  103 kg m-3. If the young’s modulus 
of the material of the crystal 8×1010 Nm-2, calculate 
the fundamental frequency of crystal. 

Sol: We have frequency 1
2

Y
l


 

 

 
10

6
33

8 101 0.7967 10 0.7967
3.5 102 3 10

Hz MHz



    



 39. A Piezo electric crystal has a thickness of 0.005m has 
density 2650 kg m-3. If the young’s modulus of the 
material of the crystal 7.9×1010 Nm-2, calculate the 
fundamental frequency of crystal. 

Sol: We have frequency 1
2

Y
l


 

 
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 
10

67.9 101 0.5461 10 0.5461
2 0.005 2650

Hz MHz 
    

 40. Calculate the fundamental frequency of crystal of 
thickness 3 mm,Y=8 ×1010 Nm-2, and 

3 32.5 10 kg m  

Sol: We have frequency 1
2

Y
l


 

 

 
10

6
3

8 101 0.943 10 0.943
2 0.003 2.5 10

Hz MHz 
    



 41. A Piezo electric crystal has a thickness of 3 mm has 
density 2650 kg m-3. If the young’s modulus of the 
material of the crystal 7.9×1010 Nm-2, calculate the 
fundamental frequency of crystal. 

Sol: We have frequency 1
2

Y
l


 

 

 
10

37.9 101 910.1 10 910.1
2 0.003 2650

Hz kHz 
    

 42. Calculate the fundamental frequency of crystal of 
thickness 0.001m,Y= 7.9 ×1010 Nm-2, and 

3 32650 10 kg m  

Sol: We have frequency 1
2

Y
l


 

 
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 
10

67.9 101 2.73 10 2.73
2 0.001 2650

Hz MHz 
    

 43. The thickness of a Piezo electric crystal is 0.002m, if 
the velocity of the crystal is 5750 ms-1 Calculate the 
fundamental frequency of crystal. 

Sol: We have frequency 
2 t

 


 

 
65750 1.437 10 1.437

2 0.002
Hz MHz    

 44. Calculate thecapacitance to produce ultrasonic waves 
of 106 Hz with an inductance of 1 henry. 

So l: We have frequency 1
2 LC






     
2 12

2 2 2 22 6

1 1 1 0.025 10
4 4 4 3.14 10 1

C farad
LC L


  

      

 45. A magnetostriction oscillator has a frequency 20 
kHz. If it produces a sound waves of velocity  6.2 ×
103 ms-1. Find the length of ferrite rod. 

Sol: We have frequency 
2 t

 


 

 
3

3

6.2 10 0.155
2 2 20 10

l m



   


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 46. Bats emit ultrasonic waves. The shortest wavelength 

in air emitted by a bat is about 0.33 cm. what is the 
highest frequency a bat can emit? velocity of sound is 
330 ms-1

Sol: We have frequency 
 

3
2

330 10
0.33 10

Hz
 

  



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PRACTICAL COURSE - 1

1. Young’s modulus of the material of a 
bar by uniform bending. 

Aim: To find the Young’s modulus of the given material bar 
by uniform bending using pin and microscope method. 

Apparatus:Pin and Microscope arrangement, Scale,Vernier 
callipers, Screw gauge, Weight hanger, Material bar or rod. 

Formula: In uniform bending, the Young’s modulus of the 
material of the bar is given by 

2

8
mgalY

Ie


Where, m = Mass at each end of the bar. 
a = Distance between the point of suspension of 

themass and nearer knife edge. 
              g  =  Acceleration due to gravity. 
l =  the length of the bar between the knife edges. 
              e  =  Elevation of the midpoint of the bar for a mass 

m at each end. 
I = Geometrical moment of inertia. 

For a bar of rectangular cross section, 
3

12
bdI 

where b is the breadth and d is the thickness of the bar. 
2

3
3
2
mgalY
bd e

 
2

3
3
2
g a l mY
b d e

    
 
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Procedure: The beam is supported horizontally on two knife 
edged supports A and B symmetrically so that equal lengths 
of the beam project 
beyond the knife edges.  
Two loops to carry 
weight hangers are 
attached near the ends of 
the beam, one at each 
end at equal distance ‘a’ 
and ‘a’ from the knife 
edges.  Two weight 
hangers of equal weights are suspended from these loops.  A 
pin P is fixed vertically at the midpoint of the beam with bees 
wax. A travelling microscope with a vertical traverse is 
focused on the pin so that the inverted image of the up of the 
pin just coincides with the horizontal cross-wire.  The reading 
of the microscope on the vertical scale is noted. This is taken 
as the initial reading for the dead load. 
 Two equal loads 200 gms. (or 500 gms) each, are placed 
on the two weight hangers. The microscope is adjusted again 
until the inverted image of the tip of the pin coincides with 
the horizontal cross wire and the reading of the microscope is 
noted.  The experiment is repeated by increasing the loads in 
steps of 200 gms. each side, up to a convenient load and each 
time the microscope reading is taken as above. The 
experiment is repeated gradually decreasing the loads in same 
steps.  Thus for each load two readings are obtained, one 
when increasing the load and the other when decreasing the 
load.  The mean of the two readings is found for each load. 
The different between the mean reading for each load and the 
initial reading for the dead load gives the elevation (e) of the 
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mid point for each load (M).  Thus the elevation (e) for each 
load (M) is obtained. 
 The readings are tabulated as shown. 

 From the readings, M
e

 value for each load ‘M’ is 

calculated, and the mean M
e

 value is calculated. 

 The length ‘l’ of the beam between the knife edges is 
measured.  The distance (a) of each weight hanger from the 
knife edge. 
 The breath ‘b’, and the thickness (d) of the beam are 
measured with a vernier calipers and a screw gauge. 
 The Young’s Modulus is calculated from the formula. 

2

3
3 .
2
gal MY
bd e



 A graph is drawn taking the 
values of ‘M’ on the x – axis 
and the corresponding values of 
‘e’ on the y – axis. (fig.viii).  It 
is straight line graph passing 
through origin.  The value of 
M
e

 is obtained from the graph.  

Substitute this value of M
e

 in 

the above equation, y can be calculated. 

Observations : 
 Length of the beam between the knife edges (l) = …. cms. 
 Average breadth of the beam (b) = …. cms  
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 Average thickness of the beam (d) = …. cms  
 Distance between the point of suspension of the weight 

hanger and the knife edge (a) = …. cms. 

To determine the breadth (b) of the beam using vernier 
calipers:   LC = 0.01 cm  

S.No MSR VC VC  LC Total : MSR + (VC  LC) 

1 
2 
3 

Average breadth b = 

To determine the thickness (d) of the beam using screw 
gauge:   
Zero Error: ………mm.         Zero Correction: ……….mm    
 LC = 0.01 mm 

S.N
o 

PS
R HSR CHSR CHSR  LC 

Total :  PSR+ 
(CHSR  LC)

1 
2 
3 

To determine the value of m
e

:  

Least count of microscope = 0.001 cm 
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S.No Load 
M 

Microscope readings
Elevation 

(e) 

m
e

Load 
increasing 

Load 
decreasing Mean 

Mean value of m
e

= 

Precautions :
 1. The beam should be arranged symmetrically on the 

beam. 
 2. The microscope screw must be turned in the same 

direction to avoid back – lash. 

Result: Young’s modulus Y =
2. Young’s modulus of the material of a 

bar by non uniform bending 
Aim: To find the Young’s modulus of the given material bar 
by non-uniform bending using pin and microscope method. 

Apparatus:Pin and Microscope arrangement, Scale,Vernier 
callipers, Screw gauge, Weight hanger, Material bar or rod. 

Formula: In uniform Bending , the Young’s modulus of the 
material of the bar is given by 
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3

48
mglY

Ie


Where, m = Mass at each end of the bar. 
g = Acceleration due to gravity. 

 l  =  length of the bar between the knife edges. 
e =  Depression of the midpoint of the bar for a mass 

m. 
I = Geometrical moment of inertia. 

For a bar of rectangular cross section, 
3

12
bdI 

Where b is the breadth and d is the thickness of the bar. 
3

34
gl mY
bd e

    
 

Procedure : The beam is supported horizontally on two knife 
edges A and b, symmetrically so that equal lengths of the 
beam project beyond the knife edges. (fig.v). The hook 
carrying the weight hanger is attached to the beam and is 
placed at the mid-point of the beam between the knife edges 
where a pin ‘p’ is fixed vertically by wax. 
 A travelling microscope with the vertical travers is focused 
on the pin so that the inverted image of the tip of the pin just 
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coincide with the horizontal cross were and the reading of the 
microscope noted.  The experiment is repeated by increasing 
the load in steps of 200 gms (or 500 gms) upto a convenient 
load and each time the microscope cading is taken as above. 
The experiment is repeated gradually decreasing be load in 
the same steps. Thus for each load two readings are obtained.  
One is for increasing the load and the other for decreasing the 
load. The mean of these two readings is found for each load.  
The difference between the mean reading for each load and 
the initial reading or the dead load gives the depression ‘c’ for 
each load M.  Thus the depression ‘e’ for each load ‘M’ is 
obtained.  The readings are tabulated as shown. 

 From the readings, M
e

 value for each load ‘M’ is 

calculated. Mean value of M
e

 is calculated. 

 The length ‘l’ of the beam between the knife edges is 
measured.  The breadth of the bam ‘b’ and the thickness of 
the beam‘d’ are measured with in Vernier calipers and a 
Screwguage. 
 The Young’ Modulus is calculated from the formula 

3

3 .
4
gl My
bd e



Graph: The graph is drawn taking the values of ‘M’ on x-
axis and the corresponding values of ‘e’ on the y – axis fig.  It 

is a straight line graph through origin. The value of M
e

 is 

obtained from the graph substituting this value of M
e

 in the 

above equation can be calculated. 
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Precautions :
 1. The beam should be arranged symmetrically on the 

knife edges. 
 2. The microscope screw must be turned in the same 

direction to avoid back – lash. 
   To determine the breadth (b) of the beam using 
vernier calipers:   LC = 0.01 cm  

S.No MSR VC VC 
LC 

TOTAL : MSR + (VC 
LC) 

1 
2 
3 

Average breadth b = 
To determine the thickness (d) of the beam using screw 
gauge:   
Zero Error  : ……….         
Zero Correction  : ……….mm                                        
LC = 0.01 mm 



PRACTICAL COURSE - 1 (P1EM) 193 

S.No PSR HSR CHSR CHSR  LC Total :  PSR+ 
(CHSR  LC)

1 
2 
3 

To determine the value of m
e

:  

Least count of microscope= 0.001 cm 
S.
No 

Load 
M 

Microscope readings
Elevation 

(e) 

m
e

Load 
increasing 

Load 
decreasing Mean 

Mean value of m
e

= 

3. Surface Tension of a Liquid by 
Capillary Rise Method 

Aim: To determine the surface Tension of water by 
measuring its rise in capillary tube. 

Apparatus:  A capillary tube of uniform bore, travelling 
microscope, a beaker, a fine wire bent twice at right angles 
and a stand with clamp. 

Principle: When a capillary tube open, at both ends is dipped 
vertically in a liquid like water, which wet glass, the liquid 
level rises into the tube due to surface tension. In the case of 
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liquids like mercury, which do not wet glass, the liquid level 
is depressed. 
 If ‘h’ is the height of the liquid level in the tube above the 
outside liquid level and r is the radius of the capillary tube the 
surface tension T is given by. 

1 1
2 3

T h r   
 

 r   g dynes/cm. 

r = radius of capillary bore       = density of water 
                       h = capillary rise 
Procedure: A capillary tube of narrow uniform bore is taken 
and is thoroughly cleaned with acidified potassium 
dichromate solution to remove traces of grease or oil.  It is 
then washed with tap water and dried. A piece of wire is bent 
twice at right angles and attracted to the tube with rubber 
bands. The inner side of the tube is wetted with water and the 
tube is then clamped vertically so that its lower end dips few 
centimeters inside the water contained in a beaker placed on a 
wooden block or on an adjustable stand.  (fig. ix). The bent 
wire is adjusted so that its tip just touches the surface of water 
in the beaker. 
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 a) To determine ‘h’: A travelling microscope capable of 
vertical motion is then focused on the lower meniscus of 
water in the capillary tube so that the horizontal cross wire 
coincides with the lower surface of the meniscus which 
appears inverted.  The microscope reading is noted.  The 
beaker containing water is removed from the below the tube 
without disturbing the tube. The microscope is lowered and 
focused on the tip of the wire so that the tip coincides with the 
horizontal cross wire.  The reading of the microscope is 
noted. The difference between the two reading gives the 
height ‘h’ of the water in the capillary tube above the free 
surface of the liquid outside it. 
 The experiment is repeated two or three times by 
immersing the tube to different depths in water.  The Mean 
value is noted. 

b) To determine radius of the capillary bore: The tube is 
removed and i.e., clamped horizontally.  The microscope is 
focused on the capillary bore. The vertical cross wire is made 
to coincide with one end of the bore and the reading is noted. 
The microscope is moved horizontally and the vertical cross 
wire is again made to coincide with the other end of the bore.  
The reading is noted, the difference between the two readings 
gives the horizontal diameter of the bore. Similarly the 
vertical diameter is also determined by making the horizontal 
cross wire coincide with the two ends of the bore and moving 
the microscope vertically.  The mean of the two diameters is 
calculated from which the average radius ‘r’ of the capillary 
bore is calculated. 
 The temperature of the water in the beaker is noted. 
 The surface tension is calculated from the formula. 

1
2 3

rT h r g   
 
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Observations:   

Least count of microscope = 0.001 cm  

S.No.
Reading of the microscope 

h = a - b Lower surface of 
the meniscus (a) 

Pointed and of 
the wire (b) 

Mean h = ……………… 
 Temperature of water = ………………….oC 
 Mean radius of the capillary tube = …………… cms 
 Density of water at room temperature = is ………..gm/cc. 
Precautions :
 1. The capillary tube should have narrow uniform bore. 
 2. It should be clean and dry. 
 3. The tube must be clamped vertically. 

Result: Surface tension of the given liquid = dynes/cm. 

4. Viscosity of Liquid by the Flow 
Method (Poiseuille’s Method) 

Aim: To determine the coefficient of viscosity of water by 
Poiseuille’s method. 

Apparatus:A constant pressure head, a uniform capillary 
tube, beaker, watch-glass and stop-watch. 



PRACTICAL COURSE - 1 (P1EM) 197 
Description:The arrangement of the apparatus consists of an 
aspirator bottle of 
about two litres 
capacity provided with 
an opening at the side 
near the bottom.  The 
opening is closed by 
one - hold rubber 
stopper through which 
passes a short glass 
tube.  The capillary 
tube is connected to the outer end of the glass tube with a 
short rubber rubbing which is provided with a pinch-cock. 
When the aspirator is filled with water, it flows out through 
the capillary tube which is kept in a horizontal position When 
the collection of water is over, the flow of water can be 
stopped by closing the pinch-cock. 
 If h1 and h2 represent the heights of water level in the 
aspirator bottle above the axis of the capillary tube before and 
after the collection of water, the mean pressure exerted is 
given by P = hdg where h is the average height [= (h1 + h2)/2], 
d the density of water and g the acceleration due to gravity. 
Procedure: The capillary tube is cleaned well first with 
acidified potassium dichromate solution and then with tap 
water.  It is then fixed to be upper tube and clamped with its 
axis horizontal.  A short length of fine thread is tied to tube 
free end of the capillary tube so that the water coming out of 
the capillary tube trickles down along the thread in drops. 
 A clean and dry beaker is taken.  It is then placed under the 
free end of the capillary tube. The height h1 cm. of water level 
in the aspirator bottle above the axis of the capillary tube is 
measured with a metre scale.  By opening pinch-cock 
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completely water is allowed to flow through the capillary tube 
into the beaker for a sufficient interval of time t seconds 
(about 15 minutes).  The pinch-cock is closed and the height 
h2 of the water level in the aspirator bottle above the axis of 
the tube is measured. 
 Now the water is poured in a measuring jar and its volume 
is noted from it. By using the travelling microscope the 
internal radius of the capillary tube ‘r’ is noted. 
Formula : 

 Coefficient of Viscosity 
4

8
Pr t
V l

 

dyne/cm2/unit velocity gradient or Poise 
l = length of capillary tube =      cm. 

 r  = internal radius of capillary tube = cm 
 V = volume of water collected in ‘t’ sec. =    ml. 
 P = hdg =      dyne / cm2. 
 h1 = initial height of water level =    cm 
 h2 = final height of water level =     cm. 
 d = density of water = 1 gm/ cc 

1 2

2
h hh 

   cm. 

Tabular Forms : 

To determine inner radius :  L.C. =  cm. 

R1

R2

M.S.R. 
(a) cm. 

V.C. V.CL.C. 
(b) cm.

Total 
(a+b) cm 
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Inner radius = 1 2~
2

R R cm 
 
 

. 

S.No. h1 h2 1 2h + hh =
2

Vol. of water 
(ml.) 

Time 
(t) sec. 

Precautions : 
 1. The flow of water must be steady. 
 2. The pinch clamp should be opened completely So that 
         the water flows under atmospheric pressure only. 
Result:Coefficient of viscosity  = Poise. 

5. Bifilar suspension – moment of 
inertia of a regular rectangular body 

Aim: To determine the moment of inertia of a regular rigid 
body by means of Bifilar suspension. 
Apparatus: A regular body like a rectangular block, two 
wires, meter scale, stop-watch, rough balance. 
Description: The arrangement consists of a regular rigid body 
like a rectangular parallelepiped. 
The body contains two screws C 
and D at its top for suspension. It 
can be suspend from a stand 
provided with two hooks A and B 
in the same horizontal line.  The 
distance between the upper and 
the lower screws are fixed. But in 
some arrangements one of these 
distances can be changed. 
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Procedure: The mass of the regular body ‘m’ is determined 
with rough balance.  The distance between A and B (2d1) and 
C and D (2d2) are noted.  (The length of the wires AC and BD 
are noted).  The body is made to vibrate in the horizontal 
plane. The time taken by the body for 20 oscillations is noted 
using a stop-clock.  The time for one oscillation or the time 
period (T) is determined.  The experiment is repeated by 
changing the length of the wire (l).  The readings are 
tabulered. The practical value of Moment of inertia is 
compared with theoretical value. 
Formula: 
Moment of Inertia: 

 Practically : 
2

21 2
24

mg d d TI gm cm
l

 

Theoritically:
2 2

12
a bI m

 
  

 
(for rectangular block only) 

 m = mass of the body =  gm 
 2d1= distance between upper screws =  cm. 

2d2= distance between lower screws = cm. 
T = time period =  sec. 
l = length of the wires = cm. 
a = length of the block =  cm. 
b = breadth of the block =  cm. 

Tabular form: 

S.No. d1 d2 

Length of 
The wire  

(l) 

Time for 20 
oscillations Time for 

One osci- 
llation (T) l

2
1 2d d T

Trial 
I 

Trial 
II Mean 
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Mean value 
2

1 2d d T
l



Precautions : 
 1. The body should make horizontal oscillations. 
 2. The body should not oscillate in the vertical plane. 
Result : Moment of Inertia : 
 Practically I =   gm – cm2

 Theoretically I =   gm – cm2

6. Fly - Wheel – Determination of 
Moment of Inertia 

Aim: To determine the moment of inertia of a flywheel about 
its axis of rotation. 

Apparatus: Flywheel, Meter scale, Vernier Calipers, Stop 
watch, known mass with hooks. 

Description: The fly-wheel consists of a massive wheel W 
with a long horizontal axle 
on either side supported on 
ball bearings embedded in a 
bracket.  The base of the 
bracket is fixed to a rigid 
support like a wall or a 
work table. 
 A short peg projects 
from the axle. The free end 
of a string carrying a mass m is looped over the peg and the 
length of the string is so adjusted that the loop slips off the 
peg automatically when the mass touches the ground.  The 
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flywheel is turned so that the string is wrapped round the axle 
evenly without any overlapping. 

Procedure: When the mass just touches the ground a chalk 
mark is made on the rim of the wheel and another chalk mark 
is made exactly opposite to it on the bracket. These two marks 
help us to count the number of revolutions made by the 
wheel. 
 The flywheel is turned so that the string is wrapped round 
the axle evenly n1 times without any overlapping. The height 
h between the ground and the bottom of the mass is measured 
with a scale.  The wheel is released and allowed to rotate 
under the action of the mass m.  A stop watch is started just 
when the loop slips off the peg. The time t and the number of 
revolutions n2 made by when before it comes to rest are 
noted. The experiment is repeated twice and the mean values 
of n2 and t are found. The angular velocity is calculated 

using the relation 24 n
t
  . 

 The diameter of the axle is measured in two mutually 
perpendicular directions by means of a vernier calipers.  The 
mean diameter and hence the mean radius r of the axle is 
found. 
 The moment of inertia of the flywheel about its axis of 
rotation is calculated from the equation. 

22
2

1 2

2n m gh r
n n

I


    


 The experiment is repeated for two or three different 
values of h and the average moment of inertia of the flywheel 
is determined. 
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Formula: 

22
2

1 2

2n m ghI r
n n 

     
Where m = mass attached to the string 
n1= no. of revolutions before detachment of the mass 
n2= no. of revolutions after detachment of the mass. 
h = height of the mass above the ground. 

  = Angular velocity = 24 rad/sec.n
t


 r = radius of the axleg = 980 cm/sec2. 
Tabular forms: 
To determine the radius of the axle: 

Value of 1 main scale division 0.1 0.01 cm
Total no. of vernier scale division 10

L.C.= S
N

  

S.No. M.S.R. 
(a) cm. 

V.C. V.C × L.C. 
(b) cm. 

Total 
(a+b) cm. 

Average diameter of the axle =     cm     
Average radius of the axle  =     cm 
To determine the value of I: 

S.No. Mass 
(m) gm h 

No. of revolutions n2 Time for n2
24 n

t

 

2

I
gm cmTrial I Trial II Mean Trial I Trial II Mean 

 Average value of I =   gm-cm2

Precautions: 
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 1) The string should be wound round the axle evenly 

without any overlapping. 
 2) The loop slipped on the peg should be loose. 
 3) The flywheel should start of its own accord under the 

action of the mass attached to it without giving any 
push. 

Result: The moment of inertia of the fly wheel, I =     gm-cm2

7. Rigidity modulus of material of 
a Wire-Dynamic Method 
(Torsional Pendulum) 

Aim: To determine the rigidity modulus    of the material 
of a given wire using torsional pendulum.  
Apparatus: The wire in the arrangement of a torsional 
pendulum, pointer, sensitive stop clock, vernier calipers, 
screw gauge, metre scale. 
Formula: Rigidity modulus 
   of the material of the wire 
made as a torsional pendulum 
is given by, 

2

4 2 2
4 MR l dynes

a T cm
  

 
 

  … (1) 

Here   
M =  Mass of the disc (gm) 
R = Radius of the disc (cm) 
l = length of the wire (cm) 
a = radius of the wire (cm) 
T = time period of   

                 oscillation  
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Description: A torsional pendulum is as shown in fig. It 
consists of a disc  hung by means of a long wire of uniform 
cross section. The thickness of the disc will be very small 
compared to its diameter. The disc is suspended by the wire 
passing through its centre C and is tightly fixed by chuck nut. 
The upper end of the wire is suspended from a rigid support 
by passing the wire through another chuck nut as shown in 
the figure. The disc hangs in a horizontal position. The disc is 
usually made of a metal like brass. A vertical line mark is 
made on the side (thickness) of the disc and the pointer is 
placed vertically in front of this mark. We place our eye 
behind the pointer and count the oscillations of the disc by 
noting the crossings of the line mark. Keeping the wire in its 
position, if we draw the disc rotated through a small angle and 
release it, then due to the twist developed in the wire torsion) 
the disc will be making oscillations in a horizontal plane 
about the wire as its axis of rotation These oscillations are 
torsional oscillations and hence the arrangement is called a 
torsional pendulum. 

We leave out the first few oscillations. Then, as the line 
mark crosses the pointer from left to right we count it as zero 
(oscillation) and start the stop clock. When the line mark once 
again crosses the pointer once again in the same direction 
(from left to right) we count it as one (oscillation). In this 
manner we can count about 20 oscillations and find the time 
period (T). 

Experimental Procedure: The disc issuspended by means of 
the given wire to form a torsional pendulum as shown in Fig. 
With the help of the check nuts, we first keep the length of the 
wirel= 50 cm. A vertical line mark is drawn on the side 
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(thickness) of the wire and we keep the pointer vertically in 
front of the line mark. Then we rotate the disc slightly so that 
the wire gets twisted (by <5). Now we release the disc and 
allow it to make simple harmonic oscillations. 

Observing the line mark from behind the pointer and with 
the help of the stop clock we note down the time taken for 20 
oscillations. 

Without changing the length, the experiment is once again 
repeated and the time taken for 20 oscillations is noted for a 
second time. The average value of these two is divided by 20 
to get the time period of oscillation T. 

Next, the length of the wire is increased by 10 cm, that is  
l = 60 cm and the same procedure as above is repeated. In this 
way, the experiment is repeated for 4 or 5 different lengths. 
The readings are entered in the tabular form. 

Each time, the length l can be measured with a meter scale. 
The diameter of the disc is measured with a Vernier calipers 
and the diameter of the wire is measured with a screw gauge. 
The mass M of the disc is found with a rough balance. 

From the table, average value of 2
I

T
is calculated. A graph 

is drawn between land T2 and 2
l

T
 value is found from the 

graph also. 
These values are substituted in formula to get the rigidity 

modulus ' '  of the material of the given wire. 

Observations: (1) l – T values and 2
l

T
 values 
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S.No.
Length of the

Wire 
1 cm 

Time taken for 20 oscillations t (s) Time period

20
t sT  2 2

l cm
T s

 
 
 Trial I Trial II Mean t 

(1)

(2)

(3)

(4)

50 cm

60 cm 

70 cm 

80 cm 
Average value of 2

l
T
   
 

 cm/s2

To determine the breadth (b) of the beam using Vernier 
calipers:LC = 0.01 cm  

S.No MSR VC VC  LC Total : MSR + (VC  LC) 

1 
2 
3 

Average breadth = cm 
Average radius R =  cm 

To determine the radius (a) of the wire using screw gauge: 
 Zero Error (ZE): …….. Zero Correction (ZC): ……mm   
    LC = 0.01 mm 

S.No
PSR 
(a) 
mm

HSR CHSR CHSR  LC 
b mm Total :  (a+b) mm 

1 
2 
3 

 Average diameter = mm   
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Average radius a = mm 

Result: Rigidity modules of the material of the wire           
2

2
4 2

4 /MR l dynes cm
a T

  
 
 



2/
10
n newton m    

 


Precautions: 
 1) There should be no kinks any where is the wire. 
 2) The diameter of the wire is to be carefully measured 

with a screw gauge at least at six different places and 
the average is to be calculated. 

 3) The diameter of the disc should also be carefully 
measured with Vernier calipers at least at four different 
places and the average is to be calculated. 

8. Volume Resonator Experiment 
Aim: To verify the relation between the volume of air in the 
resonator and the frequency of the note that produces 
resonance with it. 

Apparatus: Aspirator bottle, tuning forks of different known 
frequencies, a trough and a measuring jar. 

Description: The usual type of Helmholtz resonator used for 
laboratory work consists of an aspirator bottle B of about 2 
litre capacity with a narrow cylindrical neck at the top and an 
opening at its side near the bottom.  The opening is closed 
with a one-holed rubber stopper through which passes a glass 
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tube. A short rubber tube provided with a pinch-cock is 
connected to the free end of the glass tube. 

Procedure:The pinch - cock is 
closed and the aspirator bottle is 
filled with water up to its neck. A 
tuning fork of frequency n is excited 
and held over the mouth of the bottle 
with the plane of vibration of the 
prongs vertical. The pinch-cock is 
opened and water is allowed to flow 
out of the bottle slowly in a 
continuous stream into a beaker till 
the maximum sound is heard. The 
pinch-cock is then closed. In this 

position the natural frequency of air inside the bottle is equal 
to the frequency n of the tuning fork. The volume of air inside 
the bottle is found by adding water to the aspirator bottle up 
to the bottom of the neck from a measuring jar. The 
experiment is repeated two or three times with the same 
tuning fork and the mean volume v of air inside the bottle 
resonating with the tuning fork of frequency n is found. 

The experiment is repeated with two or three tuning forks 
of different known frequencies. In each are the volume of air 
resonating with the tuning fork is found. 

A graph is drawn with v along 
the Y-axis and 1/n2 along the X-
axis.  The graph will be a straight 
line cutting the ordinate beyond 
the origin.  The intercept OA 
gives the neck correction C. 
Formula: The relation between 
volume of air in the resonator and 
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the frequency of the fork ‘n’ is n2 (v + c) = constant 

 Unknown frequency 
 

A
v c

n




 A = average value of  2 v cn 
Tabular form: 

S.No. 
Frequency 
of the fork 

(n) Hz 

Volume of resonating air
(V) n2 1/n2 n2(v+c) 

Trial I Trial II Mean(v) 

Precautions: 
 1) The tuning fork should be held only by its shank. 
 2) The excited tuning fork should be kept over the open 

end of the tube with the plane of vibration of the prongs 
vertical. 

Result: The value of n2 (v+c) is found to be constant within 
the limits of experimental errors. 

9. Determination of ‘g’ by Compound 
Bar Pendulum 

Aim: To determine the acceleration due to gravity ‘g’ using a 
compound pendulum. 
Apparatus:The compound pendulum, stop-watch, knife-edge, 
metre scale and a telescope.  
Description:The compound pendulum consists of a uniform 
rectangular brass or iron bar with a number of holes drilled at 
regular intervals along the length of the bar. The pendulum 
can be suspended vertically by means of a horizontal knife 
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edge passing through any one of the holes. The knife-edge 
rests on a plane horizontal rigid support.  
Procedure :Two fine chalk lines are 
marked one at each end and parallel to 
the length of the pendulum. The 
pendulum is suspended at the hole 
nearest to one end and the distance 
between the knife-edge and that end is 
measured. The telescope is placed on a 
stool at a distance of about one metre 
from the pendulum and pointed 
towardsthe lower end of the pendulum. It 
is then focussed on the chalk line so that 
the point of intersection of the cross-
wires of the telescope coincides with the 
chalk line. This coincidence serves as a 
reference point to count the oscillations 
of the pendulum. 

The pendulum is displaced slightly to 
one side and released so that it oscillates 
with a small amplitude in the vertical plane without any 
wobbling i.e., without any twist as it oscillates. The time 
taken for 50 oscillations is found twice and the mean period T 
is determined. The pendulum is then suspended from each 
hole in turn and in each case the period and the distance of the 
point of suspension from the same end are measured. 

On approaching the C.G. of the pendulum the period 
becomes very large. 

The pendulum is then reversed and the experiment is 
repeated by suspending the pendulum from each hole till the 
other end is reached. It should be noted that, even after 
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reversal, the distance of the knife-edge from the same end 
should be measured. 

The pendulum is balanced on a knife-edge and the position 
of the C.G. of the pendulum is located. The distance of the 
C.G. is then measured from the same end. 

A graph is drawn with period along the Y-axis and 
distance from one 
end along the X-
axis. The graph is 
of the form shown 
in the fig. If OG 
represents the 
distance of center 
of gravity from one 
end, then the line 
drawn through G 
parallel to the Y-axis divides the graph into two symmetrical 
portions. 

A line is drawn parallel to X-axis cutting the curve at four 
points. A,B,C and D which have the same period T. The 
points A, C and B, D are two sets of interchangeable points 
having the same period T. Hence the length AC or BD gives 
the length L of the equivalent simple pendulum. Actually the 
mean of AC and BD is taken as L. 

Three or four lines similar to ABCD are drawn parallel to 
the X-axis. In each case the period and the corresponding 
length of the equivalent simple pendulum are noted. 
Formula : 

2
24 Lg

T

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 Where g = Acceleration due to gravity 
    L = Equivalent length of the pendulum 
   T = time taken for one oscillation 
Tabular forms: 

S.No. 
Distance of knife

edge from 
one end (d) 

Time for 20 oscillations Period 
T = x/20 Trial I Trial II Mean (x) 

To determine (L/T2) from graph: 

S.No. Time Period
T T2 Equivalent length L/T2

Cm/sec2AC BD L = (AC+BD)/2

Average of 2
L

T
 =

2
24 Lg

T
    cm/sec2

Precautions: 
 1) The knife edge should be perfectly horizontal. 
 2) The pendulum should oscillate in a vertical plane with a 

small amplitude and without any wobbling. 

Result: Acceleration due to gravity (g) =  cm/sec2
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10. Simple Pendulum – Normal 

distribution of Errors – Estimation of 
time period and the error of the mean 

by statistical analysis 
Aim: To determine the standard error and most probable error 
in determining acceleration due to gravity. 

Apparatus: Thread, bob, meter scale, stop – watch, calipers. 

Description :The simple pendulum 
consists of a small metallic bob 
suspended by a torsion less inextensible 
string. The upper end of the string is 
passed through a split-cork fixed tightly 
in the clamp of a retort stand. The 
distance between point of suspension and 
the centre of the bob is called length of 
the pendulum.  

Procedure:By using Vernier Calipers the 
radius of the bob(r) is determined. The 
distance between the point of the 
suspension and the bottom end of the bob 
(a) is measured. Then the length of the 
pendulum l= (a-r). Now the bob is made 
to oscillate with smaller amplitude. Then 
it makes simple harmonic oscillations. 
The time for 20 oscillations is noted using a stop watch. The 
experiment is repeated fordifferent values of pendulum length 
(l).  The readings are tabulated in the tabular form. 
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Formula: 

 

2 2

2

Error 'e' = observed value of man value of 
T T

eStandard error = 
1

l l

n n

      
   





 n = number of observations considered 

 Probable error = 0.6745   standard error. 

 Standard value of 2
l

T
 
 
 

=  

Mean value of 2
l

T
 Probable error 

2 2
2 / sec .4 l cm

T
g 

Tabular forms: 

S.No. Length of the 
Pendulum l cm 

Time for 20 oscillations Time period
T Sec. T2

2
l

TTrial I Trial II Mean

Mean value of 2
l

T

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S.No. 
2

l
T

error (e) 2e

n =  ; 2x 
 (All the observations may be corrected to the first decimal 
place.) 

Precautions: 
 1) The oscillation amplitude should be small. 
 2) The length of the pendulum is noted properly. 



by 
M.L.N. S. PRASAD 

Head of the Department of PHYSICS 


